http://poj.org/problem?id=2096

题意:s个系统n种bug,每天找出一个bug,种类的概率是1/n,系统的概率是1/s。问:每个系统至少找出一个bug;每种类的bug都被找出。的期望天数(0<n, s<=1000)

#include <cstdio>
using namespace std;
double d[1005][1005];
int n, s;
double D;
int main() {
scanf("%d%d", &n, &s);
d[s][n]=0;
D=s*n;
for(int i=s; i>=0; --i) for(int j=n; j>=0; --j) if(!(i==s&&j==n))
d[i][j]=((d[i+1][j]*(s-i)*j+d[i][j+1]*i*(n-j)+d[i+1][j+1]*(s-i)*(n-j))/D+1)/(1-i*j/D);
printf("%.4f\n", d[0][0]);
return 0;
}

  

设$d(i, j)$表示已经找到了$i$个系统的bug,$j$种bug还需要的期望天数,显然答案是$d(0, 0)$

考虑转移:由于$d(i, j)$可以转移到5种子集,且互斥,转移如下:

  1. 权为1,概率为1。(表示今天找到的bug)
  2. 权为$d(i, j)$,概率为$i*j/s/n$。(表示由找到了一个旧系统且是旧种类的bug的状态转移过来)
  3. 权为$d(i+1, j)$,概率为$(s-i)*j/s/n$。(表示由找到了一个新系统但是是旧种类的bug的状态转移过来)
  4. 权为$d(i, j+1)$,概率为$i*(n-j)/s/n$。(表示由找到了一个旧系统但是是新种类的bug的状态转移过来)
  5. 权为$d(i+1, j+1)$,概率为$(s-i)*(n-j)/s/n$。(表示由找到了一个新系统且新种类的bug的状态转移过来)

发现是不是和一般的dp不同了呢?转移中有自己!哈哈,这就是期望dp的精髓所在= =

那么我们可以移项了= =(这样就不会无限递归,体现了数学的奥秘= =)最后得到:

$$d(i, j) = (ijd(i, j)+(s-i)jd(i-1, j)+i(n-j)d(i, j-1)+(s-i)(n-j)d(i-1, j-1)+1)/(n*s)/(1-ij/(n*s))$$

可能你会说,为什么要设“还需要的期望天数”而不是“转移到当前状态的期望天数”呢?因为在自己对自己的转移中,假设那样设状态的话,答案显然是$d(s, n)$对吧,可是你会发现转移方程除数变成0了!因此状态转移不过来...

而前者由于初始状态显然是$d(s, n)=0$,就不会出现除数为0也就是求极限的步骤啦= =,因此可以这样搞下去啦= =。(其实上边的状态不是不可做,可以无限递归,其实就是极限= =,换一种方式设状态就是避免了陷入求极限)

【POJ】2096 Collecting Bugs的更多相关文章

  1. 【POJ】2096 Collecting Bugs(数学期望)

    题目 传送门:QWQ 分析 数学期望 用$ dp[i][j] $表示发现了在$ j $个子系统里面发现了$ i $个bug到$ s $个子系统里面发现了$ n $个bug需要的期望天数. $ dp[0 ...

  2. POJ 2096 Collecting Bugs 期望dp

    题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...

  3. 【POJ】1704 Georgia and Bob(Staircase Nim)

    Description Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, ...

  4. 【POJ】1067 取石子游戏(博弈论)

    Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...

  5. poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 3523   Accepted: 1740 ...

  6. poj 2096 Collecting Bugs - 概率与期望 - 动态规划

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  7. POJ 2096 Collecting Bugs

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 1716   Accepted: 783 C ...

  8. poj 2096 Collecting Bugs 概率dp 入门经典 难度:1

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 2745   Accepted: 1345 ...

  9. Poj 2096 Collecting Bugs (概率DP求期望)

    C - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

随机推荐

  1. SVN 操作指南

    1.安装 和 使用 2.导入导出 2.错误信息 ① svn不知到这样的主机

  2. Android Studio 配置

    Android配置:[转]原地址:http://www.cnblogs.com/smyhvae/p/4022844.html [开发环境] 物理机版本:Win7旗舰版(64位) Android Stu ...

  3. sdut1598 周游列国【简单模拟题】

    周游列国 Time Limit: 1000ms   Memory limit: 32768K  有疑问?点这里^_^ 题目描述 题目链接:http://acm.sdut.edu.cn/sdutoj/p ...

  4. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  5. blender源代码编译

    blender源码路径(svn):https://svn.blender.org/svnroot/bf-blender/trunk/blender/ 依赖外部Lib(svn):https://svn. ...

  6. [LeetCode] Happy Number

    Happy Number Total Accepted: 35195 Total Submissions: 106936 Difficulty: Easy Write an algorithm to ...

  7. 序列化悍将Protobuf-Net,入门动手实录

    最近在研究web api 2,看了一篇文章,讲解如何提升性能的, 在序列化速度的跑分中,Protobuf一骑绝尘,序列化速度快,性能强,体积小,所以打算了解下这个利器 1:安装篇 谷歌官方没有提供.n ...

  8. 在ASP.NET 5项目中使用和调试外部源代码包

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:由于在ASP.NET 5中,项目依赖都是通过"包"来引用,所以使用 ...

  9. CG&CAD resource

    Computational Geometry The Geometry Center (UIUC) Computational Geometry Pages (UIUC) Geometry in Ac ...

  10. maven web启动报错java.lang.ClassNotFoundException: org.springframework.web.util.Log4jConfigListener

    问题描述 SEVERE: Error configuring application listener of class org.springframework.web.util.Log4jConfi ...