BZOJ2159 : Crash 的文明世界
$x^k=\sum_{i=1}^k Stirling2(k,i)\times i!\times C(x,i)$
设$f[i][j]=\sum_{k=1}^n C(dist(i,k),j)$。
则可以利用$C(i,j)=C(i-1,j-1)+C(i-1,j)$,通过树形DP求出$f$。
时间复杂度$O((n+k)k)$。
#include<cstdio>
const int N=50010,M=155,P=10007;
int n,k,i,j,x,y,S[M][M],fac[M],g[N],v[N<<1],nxt[N<<1],ed;
int d[N][M],u[N][M],size[N],ans,L,now,tmp,A,B,Q;
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline void up(int&x,int y){x=(x+y+P)%P;}
void caldown(int x,int y){
d[x][0]=1;
for(int i=g[x];i;i=nxt[i])if(v[i]!=y){
caldown(v[i],x);
up(d[x][0],d[v[i]][0]);
for(int j=1;j<=k;j++)up(d[x][j],d[v[i]][j-1]+d[v[i]][j]);
}
}
void calup(int x,int y){
if(y){
u[x][0]=n-d[x][0];
for(int j=1;j<=k;j++){
u[x][j]=(((u[y][j-1]+u[y][j]+d[y][j-1]+d[y][j]-2*d[x][j-1]-d[x][j])%P)+P)%P;
if(j>1)up(u[x][j],-d[x][j-2]);
}
}
for(int i=g[x];i;i=nxt[i])if(v[i]!=y)calup(v[i],x);
}
int main(){
scanf("%d%d%d%d%d%d%d",&n,&k,&L,&now,&A,&B,&Q);
for(S[0][0]=i=1;i<=k;i++)for(S[i][i]=j=1;j<i;j++)S[i][j]=(j*S[i-1][j]+S[i-1][j-1])%P;
for(fac[0]=i=1;i<=k;i++)fac[i]=fac[i-1]*i%P;
for(i=1;i<n;i++){
now=(now*A+B)%Q,tmp=i<L?i:L;
x=i-now%tmp,y=i+1;
add(x,y),add(y,x);
}
caldown(1,0),calup(1,0);
for(i=1;i<=n;i++){
for(ans=0,j=1;j<=k;j++)up(ans,1LL*S[k][j]*fac[j]*(u[i][j]+d[i][j])%P);
printf("%d\n",ans);
}
return 0;
}
BZOJ2159 : Crash 的文明世界的更多相关文章
- BZOJ2159 Crash的文明世界(树形dp+斯特林数)
根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球. 回到本题,可以令f ...
- BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】
题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...
- BZOJ2159 Crash的文明世界
Description 传送门 给你一个n个点的树,边权为1. 对于每个点u, 求:\(\sum_{i = 1}^{n} distance(u, i)^{k}\) $ n \leq 50000, k ...
- [BZOJ2159]Crash的文明世界(斯特林数+树形DP)
题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...
- BZOJ2159 Crash的文明世界——树上DP&&第二类Stirling数
题意 给定一个有 $n$ 个结点的树,设 $S(i)$ 为第 $i$ 个结点的“指标值”,定义为 $S(i)=\sum_{i=1}^{n}dist(i,j)^k$,$dist(i, j)$ 为结点 $ ...
- 题解 [BZOJ2159] Crash的文明世界
题面 解析 这题一眼换根DP啊 首先,我们考虑一下如何转换\(n^m\)这个式子, 先把式子摆出来吧:\(n^m=\sum_{j=0}^mS(m,j)C_n^jj!\) 其中\(S(m,j)\)表示第 ...
- 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...
- 【BZOJ2159】Crash的文明世界
[2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...
- [国家集训队] Crash 的文明世界(第二类斯特林数)
题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...
随机推荐
- 利用CocoaPods,在项目中导入AFNetworking类库
场景1:利用CocoaPods,在项目中导入AFNetworking类库 AFNetworking类库在GitHub地址是:https://github.com/AFNetworking/AFNetw ...
- LR性能指标分析
Memory: ·Available Mbytes 简述:可用物理内存数.如果Available Mbytes的值很小(4 MB或更小),则说明计算机上总的内存可能不足,或某程序没有释放内存. 参考值 ...
- 磁盘空间占满inode结点没用完 并删除了文件但是释放不了
lsof |grep delete lsof(list system open file )可显示系统打开的文件,以root身份运行. 很多时候文件正在被占用,即使删除了,也无法释放空间,只有停 了 ...
- .net学习笔记---xml操作及读写
一.XML文件操作中与.Net中对应的类 微软的.NET框架在System.xml命名空间提供了一系列的类用于Dom的实现. 以下给出XML文档的组成部分对应.NET中的类: XML文档组成部分 对应 ...
- 数据结构和算法 – 11.高级排序算法(上)
对现实中的排序问题,算法有七把利剑可以助你马道成功. 首先排序分为四种: 交换排序: 包括冒泡排序,快速排序. 选择排序: 包括直接选择排序,堆排序. 插入排序 ...
- Ubuntu下调整swap分区的大小
转自:http://blog.chinaunix.net/uid-7573623-id-2048964.html 由于安装oracle 的时候,swap太小不能继续安装,于是想有什么方法在不不用安装o ...
- Pyqt QDockWidget 停靠窗体
网上的一个关于QDockWidget 停靠窗体的教程 代码: # -*- coding: utf-8 -*- from PyQt4.QtGui import * from PyQt4.QtCore i ...
- Oracle的thin驱动和oci驱动有什么不同?哪个性能好些?
OCI:要安装ORACLE客户端,移植性略差,理论上性能好些 THIN:属于TYPE4,纯JAVA实现,移植性好,理论上性能略差些 推荐:最好还是使用THIN DRIVER吧,移植性好些,使用起来 ...
- html5拖拽
html5拖拽一 <!DOCTYPE html> <html> <head lang="en"> <meta charset=" ...
- python web编程 创建一个web服务器
这里就介绍几个底层的用于创建web服务器的模块,其中最为主要的就是BaseHTTPServer,很多框架和web服务器就是在他们的基础上创建的 基础知识 要建立一个Web 服务,一个基本的服务器和一个 ...