Description

IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记。JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件。
日记中记录了连续N天发生的时间,大约每天发生一件。
事件有种类之分。第i天(1<=i<=N)发生的事件的种类用一个整数Xi表示,Xi越大,事件的规模就越大。
JOI教授决定用如下的方法分析这些日记:
1. 选择日记中连续的一些天作为分析的时间段
2. 事件种类t的重要度为t*(这段时间内重要度为t的事件数)
3. 计算出所有事件种类的重要度,输出其中的最大值
现在你被要求制作一个帮助教授分析的程序,每次给出分析的区间,你需要输出重要度的最大值。

Input

第一行两个空格分隔的整数N和Q,表示日记一共记录了N天,询问有Q次。
接下来一行N个空格分隔的整数X1...XN,Xi表示第i天发生的事件的种类
接下来Q行,第i行(1<=i<=Q)有两个空格分隔整数Ai和Bi,表示第i次询问的区间为[Ai,Bi]。

Output

输出Q行,第i行(1<=i<=Q)一个整数,表示第i次询问的最大重要度

Sample Input

5 5
9 8 7 8 9
1 2
3 4
4 4
1 4
2 4

Sample Output

9
8
8
16
16

HINT

1<=N<=10^5
1<=Q<=10^5
1<=Xi<=10^9 (1<=i<=N)
 

  这道题刚开始时没有思路......后来发现好像和区间众数的方法有点像......

  好了,我们考虑如何做这道题。首先,我们可以把区间分块。然后,我们可以用$O(n \sqrt{n})$的复杂度求出$f_{i,j}$,表示取第$i$块到第$j$块中所有元素的答案。

  然后,我们考虑如何得到区间$[l,r]$的答案。如果$l$和$r$在同一块,那么显然扫一遍这个块就可以了。否则,我们可以先把$[l,r]$覆盖的完整的块的答案统计一下,再统计一下边角余料中答案最大的数。显然答案一定在这三者中。

  但是,统计边角余料的答案并不好做。于是,我们可以再来一个数组$cnt_{i,j}$,表示前$i$个块中第$j$号元素出现了多少次(注意先要离散化),然后我们就可以$O(1)$地统计完整的块中每种元素出现的个数了。取一下$\max$就可以了。

  下面是代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 100010
#define kuai 501 using namespace std;
typedef long long llg; int n,m,N,ln,L[kuai],R[kuai],cnt[kuai][maxn];
int a[maxn],b[maxn],lb,c[maxn],ci[maxn],be[maxn];
llg f[kuai][kuai],ans; int getint(){
int w=;bool q=;
char c=getchar();
while((c>''||c<'')&&c!='-') c=getchar();
if(c=='-') q=,c=getchar();
while(c>=''&&c<='') w=w*+c-'',c=getchar();
return q?-w:w;
} int main(){
n=getint();m=getint();
for(int i=;i<=n;i++) a[i]=b[i]=getint();
sort(b+,b+n+); lb=unique(b+,b+n+)-b-;
for(int i=;i<=n;i++){
int l=,r=lb,mid;
while(l!=r){
mid=l+r>>;
if(a[i]<=b[mid]) r=mid;
else l=mid+;
}
c[i]=l;
}
N=sqrt(n); ln=n/N; if(n%N) ln++;
for(int i=;i<ln;i++) L[i]=R[i-]+,R[i]=N*i;
L[ln]=R[ln-]+; R[ln]=n;
for(int i=,r;i<=ln;i++){
ans=; r=L[i]-;
for(int j=L[i];j<=R[i];j++) cnt[i][c[j]]++,be[j]=i;
for(int j=;j<=ln;j++){
while(r<R[j]){
r++; ci[c[r]]++;
ans=max(ans,(llg)(ci[c[r]])*(llg)a[r]);
}
f[i][j]=ans;
}
for(int j=;j<=n;j++) cnt[i][j]+=cnt[i-][j];
for(int j=;j<=lb;j++) ci[j]=;
}
while(m--){
int l=getint(),r=getint(); ans=;
if(be[l]==be[r]){
for(int i=l;i<=r;i++)
ans=max(ans,(llg)(++ci[c[i]])*(llg)a[i]);
for(int i=l;i<=r;i++) ci[c[i]]--;
}
else{
ans=f[be[l]+][be[r]-];
for(int i=l;i<=R[be[l]];i++)
ans=max(ans,(llg)((++ci[c[i]])+cnt[be[r]-][c[i]]-cnt[be[l]][c[i]])*(llg)a[i]);
for(int i=L[be[r]];i<=r;i++)
ans=max(ans,(llg)((++ci[c[i]])+cnt[be[r]-][c[i]]-cnt[be[l]][c[i]])*(llg)a[i]);
for(int i=l;i<=R[be[l]];i++) ci[c[i]]--;
for(int i=L[be[r]];i<=r;i++) ci[c[i]]--;
}
printf("%lld\n",ans);
}
return ;
}

BZOJ 4241 历史研究的更多相关文章

  1. BZOJ 4241: 历史研究——莫队 二叉堆

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4241 题意:N个int范围内的数,M次询问一个区间最大的(数字*出现次数)(加权众数),可以 ...

  2. BZOJ 4241: 历史研究 ( 回 滚 )

    题目:  链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4241 题意:给你一个长度为n序列,m次查询,每次询问 一段区间 最大的  a[ i ...

  3. bzoj 4241 历史研究——分块(区间加权众数)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4241 套路:可以大力预处理,如果求区间加权众数,可以预处理i~j块(或 j 位置)的最大值, ...

  4. BZOJ.4241.历史研究(回滚莫队 分块)

    题目链接 \(Description\) 长度为n的数列,m次询问,每次询问一段区间最大的 \(A_i*tm_i\) (重要度*出现次数) \(Solution\) 好像可以用莫队做,但是取max的操 ...

  5. BZOJ 4241 历史研究(分块)

    题意 题解 #include<iostream> #include<cstring> #include<cstdio> #include<cmath> ...

  6. 【题解】BZOJ4241: 历史研究(魔改莫队)

    [题解]BZOJ4241: 历史研究(魔改莫队) 真的是好题啊 题意 给你一个序列和很多组询问(可以离线),问你这个区间中\(\max\){元素出现个数\(\times\)元素权值} IOI国历史研究 ...

  7. bzoj4241/AT1219 历史研究(回滚莫队)

    bzoj4241/AT1219 历史研究(回滚莫队) bzoj它爆炸了. luogu 题解时间 我怎么又在做水题. 就是区间带乘数权众数. 经典回滚莫队,一般对于延长区间简单而缩短区间难的莫队题可以考 ...

  8. BZOJ4241 历史研究

    Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...

  9. BZOJ4241历史研究——回滚莫队

    题目描述 IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. 日记中记录了连 ...

随机推荐

  1. mysql命令(数据库备份与恢复)

    本地: 1.进入MySQL目录下的bin文件夹:e:回车: e:\>cd mysql\bin? 回车 2.导出数据库:mysqldump -u 用户名 -p 数据库名 > 导出的文件名 范 ...

  2. DFX 安全测试-- 告诉你什么是XSS、sql注入?POST和GET的区别....

    1.用户权限测试 (1) 用户权限控制 1) 用户权限控制主要是对一些有权限控制的功能进行验证 2) 用户A才能进行的操作,B是否能够进行操作(可通过窜session,将在下面介绍) 3)只能有A条件 ...

  3. Visio作图

    1.Microsoft Visio介绍 Visio是一款便于IT和商务专业人员就复杂信息.系统和流程进行可视化处理.分析和交流的软件,也是Microsoft Office办公软件家族中的一个绘图工具软 ...

  4. Aptana Studio 3 汉化简体中文版

    最近开始学习ruby on rails了,同事推荐我用aptana这个编辑器,它对ror的支持比较好,所以安装了这个软件,但是发现都是英文的,所以在网上看汉化教程,幸亏有高手写过这个文章了,这里我只是 ...

  5. Hello BIEE

      这篇文章提供了一个Hello World式的例子,讲述如何创建一个最简单的BIEE资料库.本文使用的示例数据可以在从此链接下载:http://www.zw1840.com . 目录 创建资料库 创 ...

  6. spring annotation简述

    一.Annotation基本概念 Annotation是jdk5以后出现的新特性,在jdk中,其内置了许多自己的Annotation,例如@Override,@SuppresWarning,@Depr ...

  7. Spring中@Autowired注解、@Resource注解的区别

    Spring不但支持自己定义的@Autowired注解,还支持几个由JSR-250规范定义的注解,它们分别是@Resource.@PostConstruct以及@PreDestroy. @Resour ...

  8. PKG_COLLECTION_LHR 存储过程或函数返回集合类型

    存储过程或函数可以返回集合类型,方法很多,今天整理在一个包中,其它情况可照猫画虎. CREATE OR REPLACE PACKAGE PKG_COLLECTION_LHR AUTHID CURREN ...

  9. ELK Kafka json to elk

    Logstash配置     input { kafka { zk_connect => "127.0.0.1:2181" topic_id => "clus ...

  10. 9、FTP封杀用户、限制传输速率、限制访问目录、为匿名用户提供下载资源

    一.封杀某些用户访问FTP服务器 例如  封杀 yanji [root@localhost root]#   vi   /etc/vsftpd.ftpusers     (用户控制配置文件,主要用于限 ...