Knights of the Round Table-POJ2942(双连通分量+交叉染色)
Description
an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere,
while the rest are busy doing heroic deeds around the country.
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying
the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
- The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
- An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of
votes, and the argument goes on.)
Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that
there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons).
If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights
of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.
Input
contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).
The input is terminated by a block with n = m = 0 .
Output
Sample Input
5 5
1 4
1 5
2 5
3 4
4 5
0 0
Sample Output
2
Hint
Source
(1):搜索双连通分量。DFS过程中,用一个栈保存所有经过的点,判断割点,碰到割点就将标记栈的顶点并退栈,直到当前节点停止标记当前割点。标记过的节点在同一个连通分量里。
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <set>
#include <map>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define LL long long using namespace std; const int Max = 1100; typedef struct Node
{
int num; int next;
}Line; Line Li[Max*100]; int top; int Head[Max]; int low[Max],dfn[Max]; int Map[Max][Max]; int n,m; int Num,num,ant; int Que[Max]; int vis[Max]; int part[Max],color[Max]; void AddNum(int u)
{
Li[top].num=num;
Li[top].next = Head[u];
Head[u] = top++;
} void dfs(int u,int father)
{
vis[u]=1;//表示正在访问 dfn[u]=low[u]=Num++; Que[ant++]=u; for(int i=1;i<=Map[u][0];i++)
{
if(vis[Map[u][i]]==1&&Map[u][i]!=father)
{
low[u]=min(low[u],dfn[Map[u][i]]);
}
if(vis[Map[u][i]]==0)
{
dfs(Map[u][i],u); low[u]=min(low[Map[u][i]],low[u]); if(low[Map[u][i]]>=dfn[u])//子树形成环
{
// 标记
AddNum(u); for(int j=Que[ant];j!=Map[u][i];AddNum(j))
{
j=Que[--ant];
} num++ ;
}
}
} vis[u]=2;//表示已经访问并且处理完
} int OddCycle(int u,int flag)//判断奇环
{
color[u]=flag; for(int i=1;i<=Map[u][0];i++)
{
if(!part[Map[u][i]])
{
continue;
} if(color[Map[u][i]]==0 && OddCycle(Map[u][i],-flag))
{
return 1;
}
if(color[Map[u][i]]==flag)
{
return 1;
}
}
return 0;
} int main()
{
int u,v; while(~scanf("%d %d",&n,&m)&&(n+m))
{ // 数据处理
memset(Map,0,sizeof(Map)); for(int i=1;i<=m;i++)
{
scanf("%d %d",&u,&v); Map[u][v]=Map[v][u]=1;
} for(int i=1;i<=n;i++)
{
Map[i][i]=1;
}
//建图
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
Map[0][j]=Map[i][j];
} for(int j=1;j<=n;j++)
{
if(!Map[0][j])
Map[i][++Map[i][0]]=j;
}
} memset(vis,0,sizeof(vis)); // 标记是否被访问,以及访问的状态 memset(Head,-1,sizeof(Head)); Num = 0; num=0 ; top=0;ant = 0; //去除割边 for(int i=1;i<=n;i++)
{
if(!vis[i])
{
Num = 0;
dfs(i,0);
}
} memset(vis,0,sizeof(vis)); for(int i=0;i<num;i++)//判断奇环
{ memset(part,0,sizeof(part)); memset(color,0,sizeof(color)); for(int j=1;j<=n;j++)
{
for(int k=Head[j];k!=-1;k=Li[k].next)
{
if(Li[k].num == i)
{
part[j]=1;
break;
}
}
} for(int j=1;j<=n;j++)
{
if(part[j])
{
if(OddCycle(j,1))
{
for(int k=1;k<=n;k++)
{
vis[k]+=part[k];
}
}
break;
}
}
} int ans = 0; for(int i=1;i<=n;i++)
{
if(!vis[i])
{
ans++;
}
} printf("%d\n",ans);
}
return 0;
}
Knights of the Round Table-POJ2942(双连通分量+交叉染色)的更多相关文章
- POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 12439 Acce ...
- 【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)
[POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS Memory Limit: 65536K Total Su ...
- 【POJ】2942 Knights of the Round Table(双连通分量)
http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...
- POJ2942 Knights of the Round Table 点双连通分量,逆图,奇圈
题目链接: poj2942 题意: 有n个人,能够开多场圆桌会议 这n个人中,有m对人有仇视的关系,相互仇视的两人坐在相邻的位置 且每场圆桌会议的人数仅仅能为奇书 问有多少人不能參加 解题思路: 首先 ...
- POJ2942 Knights of the Round Table 点双连通分量 二分图判定
题目大意 有N个骑士,给出某些骑士之间的仇恨关系,每次开会时会选一些骑士开,骑士们会围坐在一个圆桌旁.一次会议能够顺利举行,要满足两个条件:1.任意相互憎恨的两个骑士不能相邻.2.开会人数为大于2的奇 ...
- poj 2942 Knights of the Round Table(点双连通分量+二分图判定)
题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...
- UVALive-3523 Knights of the Round Table (双连通分量+二分图匹配)
题目大意:有n个骑士要在圆桌上开会,但是相互憎恶的两个骑士不能相邻,现在已知骑士们之间的憎恶关系,问有几个骑士一定不能参加会议.参会骑士至少有3个且有奇数个. 题目分析:在可以相邻的骑士之间连一条无向 ...
- POJ 2942 Knights of the Round Table(双连通分量)
http://poj.org/problem?id=2942 题意 :n个骑士举行圆桌会议,每次会议应至少3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置.如果意见发生分歧,则需要举手表决,因此 ...
- [POJ2942]Knights of the Round Table(点双+二分图判定——染色法)
建补图,是两个不仇恨的骑士连边,如果有环,则可以凑成一桌和谐的打麻将 不能直接缩点,因为直接缩点求的是连通分量,点双缩点只是把环缩起来 普通缩点 ...
随机推荐
- 理解insert all/insert first的使用
在常用的SQL写法中我们会经常遇到把一个表的数据插入另外一张表的情况,这是一个insert into 表名 select .... from 表名 就可以解决了.但是如果是把一张表的数据同时插入两 ...
- 当table中的td内容过多,显示不完全,用省略号表示。
.format{ min-width:100px; max-width:200px; overflow:hidden; white-space:nowrap; text-overflow:ellips ...
- CentOS下IP的配置
1.打开命令窗口,切换成root账户:su - root 2.进入目录:/etc/sysconfig/network-scripts,打开文件vi ifcfg-eth0 3.修改参数: ## 名称DE ...
- 使用xtrbackup 热备MySQL数据库 以及恢复和自动删除脚本
直接上脚本 热备(全备) #!/bin/bash user='root' passwd='123456' my_config='/etc/my.cnf' #mysql configure log=fu ...
- BizTalk开发系列(三十六) Orchestration单实例执行
BizTalk 是高效的消息处理引擎,采用多线程并发的方式来处理消息.也就是说当有消息被接收的时候就会产生一个新的消息处理实例.但有时目标系统可能并没有并发处理 的能力, 这时就需要在BizTalk中 ...
- Android课程---qq登陆页面(练习)
AndroidManifest.xml <?xml version="1.0" encoding="utf-8"?> <manifest xm ...
- 【转】oracle回闪操作
在9i上执行的操作 查询test表中记录select * from test;删除test表中记录delete from test;获得过去的会话exec dbms_flashback.disable ...
- DataSet, BindingSource, BindingNavigator Relationship
Multiple Bindings caused dataBing weird???? Text.DataBindings.Add(new Binding("Text", bs1, ...
- NEC学习 ---- 布局 -三列,左侧自适应
效果图: html代码: <div id="demo4"> <div class="g-bd4 f-cb"> <div class ...
- kibana使用操作部分
1.kibana的概念及特点. 概念:数据可视化平台工具 特点: - 灵活的分析和可视化平台 - 实时总结和流数据的图表 - 为不同的用户显示直观的界面 - 即时分享和嵌入的仪表板 2.kib ...