Knights of the Round Table

Description

Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced
an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere,
while the rest are busy doing heroic deeds around the country. 



Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying
the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:

  • The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
  • An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of
    votes, and the argument goes on.)

Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that
there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons).
If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights
of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled. 


Input

The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines
contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ). 



The input is terminated by a block with n = m = 0 . 


Output

For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled. 


Sample Input

5 5
1 4
1 5
2 5
3 4
4 5
0 0

Sample Output

2

Hint

Huge input file, 'scanf' recommended to avoid TLE. 

Source


题意:


由于无视武士之间容易打架,Merlin智者为了发生武士打架,有两个规则:
(1):相互仇视的武士不能挨着做,由于是坐在圆桌周围,每一个武士有两个相邻的武士。
(2):围着圆桌做的武士数目必须是奇数个,以确保在发生问题时,能够投票解决。
满足以上两个条件的武士可以坐下来,如果一个武士不可能被安排坐下,他将被从武士的名单中去除。
智者想知道有多少武士将被去除。

方法:
构造无向图,将不相互仇视的建立边。

(1):搜索双连通分量。DFS过程中,用一个栈保存所有经过的点,判断割点,碰到割点就将标记栈的顶点并退栈,直到当前节点停止标记当前割点。标记过的节点在同一个连通分量里。
(2):交叉染色搜索奇偶。在一个节点大于2的双连通分量中,必定存在一个圈经过所有的节点,如果这个圈是奇圈,则该连通分量的所有点都满足,如果是偶圈,如果包含奇圈,必定还有一个奇圈经过剩余的所有节点,因此一个双连通分量里只要存在一个奇圈。
(3):一个点可能满足多个连通分量

#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <set>
#include <map>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define LL long long using namespace std; const int Max = 1100; typedef struct Node
{
int num; int next;
}Line; Line Li[Max*100]; int top; int Head[Max]; int low[Max],dfn[Max]; int Map[Max][Max]; int n,m; int Num,num,ant; int Que[Max]; int vis[Max]; int part[Max],color[Max]; void AddNum(int u)
{
Li[top].num=num;
Li[top].next = Head[u];
Head[u] = top++;
} void dfs(int u,int father)
{
vis[u]=1;//表示正在访问 dfn[u]=low[u]=Num++; Que[ant++]=u; for(int i=1;i<=Map[u][0];i++)
{
if(vis[Map[u][i]]==1&&Map[u][i]!=father)
{
low[u]=min(low[u],dfn[Map[u][i]]);
}
if(vis[Map[u][i]]==0)
{
dfs(Map[u][i],u); low[u]=min(low[Map[u][i]],low[u]); if(low[Map[u][i]]>=dfn[u])//子树形成环
{
// 标记
AddNum(u); for(int j=Que[ant];j!=Map[u][i];AddNum(j))
{
j=Que[--ant];
} num++ ;
}
}
} vis[u]=2;//表示已经访问并且处理完
} int OddCycle(int u,int flag)//判断奇环
{
color[u]=flag; for(int i=1;i<=Map[u][0];i++)
{
if(!part[Map[u][i]])
{
continue;
} if(color[Map[u][i]]==0 && OddCycle(Map[u][i],-flag))
{
return 1;
}
if(color[Map[u][i]]==flag)
{
return 1;
}
}
return 0;
} int main()
{
int u,v; while(~scanf("%d %d",&n,&m)&&(n+m))
{ // 数据处理
memset(Map,0,sizeof(Map)); for(int i=1;i<=m;i++)
{
scanf("%d %d",&u,&v); Map[u][v]=Map[v][u]=1;
} for(int i=1;i<=n;i++)
{
Map[i][i]=1;
}
//建图
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
Map[0][j]=Map[i][j];
} for(int j=1;j<=n;j++)
{
if(!Map[0][j])
Map[i][++Map[i][0]]=j;
}
} memset(vis,0,sizeof(vis)); // 标记是否被访问,以及访问的状态 memset(Head,-1,sizeof(Head)); Num = 0; num=0 ; top=0;ant = 0; //去除割边 for(int i=1;i<=n;i++)
{
if(!vis[i])
{
Num = 0;
dfs(i,0);
}
} memset(vis,0,sizeof(vis)); for(int i=0;i<num;i++)//判断奇环
{ memset(part,0,sizeof(part)); memset(color,0,sizeof(color)); for(int j=1;j<=n;j++)
{
for(int k=Head[j];k!=-1;k=Li[k].next)
{
if(Li[k].num == i)
{
part[j]=1;
break;
}
}
} for(int j=1;j<=n;j++)
{
if(part[j])
{
if(OddCycle(j,1))
{
for(int k=1;k<=n;k++)
{
vis[k]+=part[k];
}
}
break;
}
}
} int ans = 0; for(int i=1;i<=n;i++)
{
if(!vis[i])
{
ans++;
}
} printf("%d\n",ans);
}
return 0;
}

Knights of the Round Table-POJ2942(双连通分量+交叉染色)的更多相关文章

  1. POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 12439   Acce ...

  2. 【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)

    [POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS   Memory Limit: 65536K Total Su ...

  3. 【POJ】2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...

  4. POJ2942 Knights of the Round Table 点双连通分量,逆图,奇圈

    题目链接: poj2942 题意: 有n个人,能够开多场圆桌会议 这n个人中,有m对人有仇视的关系,相互仇视的两人坐在相邻的位置 且每场圆桌会议的人数仅仅能为奇书 问有多少人不能參加 解题思路: 首先 ...

  5. POJ2942 Knights of the Round Table 点双连通分量 二分图判定

    题目大意 有N个骑士,给出某些骑士之间的仇恨关系,每次开会时会选一些骑士开,骑士们会围坐在一个圆桌旁.一次会议能够顺利举行,要满足两个条件:1.任意相互憎恨的两个骑士不能相邻.2.开会人数为大于2的奇 ...

  6. poj 2942 Knights of the Round Table(点双连通分量+二分图判定)

    题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...

  7. UVALive-3523 Knights of the Round Table (双连通分量+二分图匹配)

    题目大意:有n个骑士要在圆桌上开会,但是相互憎恶的两个骑士不能相邻,现在已知骑士们之间的憎恶关系,问有几个骑士一定不能参加会议.参会骑士至少有3个且有奇数个. 题目分析:在可以相邻的骑士之间连一条无向 ...

  8. POJ 2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 题意 :n个骑士举行圆桌会议,每次会议应至少3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置.如果意见发生分歧,则需要举手表决,因此 ...

  9. [POJ2942]Knights of the Round Table(点双+二分图判定——染色法)

    建补图,是两个不仇恨的骑士连边,如果有环,则可以凑成一桌和谐的打麻将 不能直接缩点,因为直接缩点求的是连通分量,点双缩点只是把环缩起来 普通缩点                             ...

随机推荐

  1. Web安全学习笔记之一

    浏览器基本策略:同源策略 同源策略规定:不同域的客户端脚本在没有明确授权的情况下,不能读写对方的资源. 同域与不同域:如http://www.text.com与https://www.text.com ...

  2. C++对析构函数的误解(转)

    C++析构前言 析构函数在什么时候会自动被调用,在什么时候需要手动来调用,真不好意思说偶学过C++…今日特此拨乱反正. C++析构误解正文 对象在构造的时候系统会分配内存资源,对一些数据成员进行初始化 ...

  3. MacPort 的使用

    MacPorts 的安装和使用   官网下载最版本的 安装包   自动安装  可能会出现很慢的情况   设置环境变量   vim ~/.bash_profile      i  插入修改  :wq 保 ...

  4. DEDECMS里面DEDE函数解析

    下面来解说下DEDECMS织梦CMS模板里面的函数说明 在文件include/inc_function.php里面 GetCurUrl() 获贴切前的脚本的URL GetAlabNum($str) 把 ...

  5. BizTalk动手实验(十一)自定义开发管道组件

    1 课程简介 通过本课程熟悉自定义开始管道组件的流程.各组件接口的功能作用以及自定义管道. 本场景为开发一个消息ZIP压缩的发送管道组件. 2 准备工作 1. 熟悉管道组件各阶段组成 2. 下载Ion ...

  6. PHP版本VC6与VC9、Thread Safe与None-Thread Safe等的区别

    PHP版本VC6与VC9.Thread Safe与None-Thread Safe等的区别 [摘要]PHP 是一种 HTML 内嵌式的语言,是一种在服务器端执行的嵌入HTML文档的脚本语言,在PHP发 ...

  7. bash 常用操作

    删除不为空的文件夹 rm -rf dir_name

  8. 【翻译】How To Tango With Django 1.5.4 第二章

    2.开始吧! 准备好两个关键的安装包 Python version 2.7.5 Django version 1.5.4 2.1熟悉你自己的系统(我的是windows) 略 2.2安装软件 2.2.1 ...

  9. SQL2008 SQL2012 远程连接配置方法

    第一步: SQL2008(或2012): 打开SQL Server Management Studio-->在左边[对象资源管理器]中选择第一项(主数据库引擎)-->右键-->方面- ...

  10. UE4中使用数据表(Data Table)

    本文依据官方文档数据驱动游戏性元素整理而来. 做过游戏的应该都清楚,如果游戏稍微有点规模,那么使用数据驱动来做游戏一般是必不可少的一步,一般也就是策划通过本表的方式来解决.下面我们来简单说一下UE4中 ...