Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员。

结    构
二进制
召回率
100%
方    法
哈希函数

简介

编辑

Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员。如果检测结果为是,该元素不一定在集合中;但如果检测结果为否,该元素一定不在集合中。因此Bloom filter具有100%的召回率。这样每个检测请求返回有“在集合内(可能错误)”和“不在集合内(绝对不在集合内)”两种情况,可见 Bloom filter 是牺牲了正确率和时间以节省空间。

计算方法

编辑

如需要判断一个元素是不是在一个集合中,我们通常做法是把所有元素保存下来,然后通过比较知道它是不是在集合内,链表、树都是基于这种思路,当集合内元素个数的变大,我们需要的空间和时间都线性变大,检索速度也越来越慢。 Bloom filter 采用的是哈希函数的方法,将一个元素映射到一个 m 长度的阵列上的一个点,当这个点是 1 时,那么这个元素在集合内,反之则不在集合内。这个方法的缺点就是当检测的元素很多的时候可能有冲突,解决方法就是使用 k 个哈希 函数对应 k 个点,如果所有点都是 1 的话,那么元素在集合内,如果有 0 的话,元素则不在集合内。

优点缺点

编辑

Bloom filter 优点就是它的插入和查询时间都是常数,另外它查询元素却不保存元素本身,具有良好的安全性。它的缺点也是显而易见的,当插入的元素越多,错判“在集合内”的概率就越大了,另外 Bloom filter 也不能删除一个元素,因为多个元素哈希的结果可能在 Bloom filter 结构中占用的是同一个位,如果删除了一个比特位,可能会影响多个元素的检测。

简单例子

编辑

下面是一个简单的 Bloom filter 结构,开始时集合内没有元素
当来了一个元素 a,进行判断,这里哈希函数有两个,计算出对应的比特位上为 0 ,即是 a 不在集合内,将 a 添加进去:
之后的元素,要判断是不是在集合内,也是同 a 一样的方法,只有对元素哈希后对应位置上都是 1 才认为这个元素在集合内(虽然这样可能会误判):
随着元素的插入,Bloom filter 中修改的值变多,出现误判的几率也随之变大,当新来一个元素时,满足其在集合内的条件,即所有对应位都是 1 ,这样就可能有两种情况,一是这个元素就在集合内,没有发生误判;还有一种情况就是发生误判,出现了哈希碰撞,这个元素本不在集合内。

bloom filter的更多相关文章

  1. Bloom Filter:海量数据的HashSet

    Bloom Filter一般用于数据的去重计算,近似于HashSet的功能:但是不同于Bitmap(用于精确计算),其为一种估算的数据结构,存在误判(false positive)的情况. 1. 基本 ...

  2. 探索C#之布隆过滤器(Bloom filter)

    阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是 ...

  3. Bloom Filter 布隆过滤器

    Bloom Filter 是由伯顿.布隆(Burton Bloom)在1970年提出的一种多hash函数映射的快速查找算法.它实际上是一个很长的二进制向量和一些列随机映射函数.应用在数据量很大的情况下 ...

  4. Bloom Filter学习

    参考文献: Bloom Filters - the math    http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html    B ...

  5. 【转】探索C#之布隆过滤器(Bloom filter)

    原文:蘑菇先生,http://www.cnblogs.com/mushroom/p/4556801.html 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量 ...

  6. Bloom Filter 概念和原理

    Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员.如果检测结果为是,该元素不一定 ...

  7. 【转】Bloom Filter布隆过滤器的概念和原理

    转自:http://blog.csdn.net/jiaomeng/article/details/1495500 之前看数学之美丽,里面有提到布隆过滤器的过滤垃圾邮件,感觉到何其的牛,竟然有这么高效的 ...

  8. [爬虫学习笔记]基于Bloom Filter的url去重模块UrlSeen

            Url Seen用来做url去重.对于一个大的爬虫系统,它可能已经有百亿或者千亿的url,新来一个url如何能快速的判断url是否已经出现过非常关键.因为大的爬虫系统可能一秒钟就会下载 ...

  9. bloom filter 详解[转]

    Bloom Filter概念和原理 焦萌 2007年1月27日 Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.Bloom ...

随机推荐

  1. JavaScript学习笔记–(new关键字)

    作用 是创建一个对象实例.这个对象可以是用户自定义的,也可以是一些系统自带的带构造函数的对象. 描述 创建一个对象类型需要创建一个指定了名称和属性的函数:其中这些属性可以指向它本身,也可以指向其他对象 ...

  2. linux下mysql开启远程访问权限及防火墙开放3306端口

    默认mysql的用户是没有远程访问的权限的,因此当程序跟数据库不在同一台服务器上时,我们需要开启mysql的远程访问权限. 主流的有两种方法,改表法和授权法. 相对而言,改表法比较容易一点,个人也是比 ...

  3. 虚拟机centos6.5 --开放端口

    系统:centos6.5 1.查看端口开放情况 /etc/init.d/iptables status 2.开启端口 /sbin/iptables -I INPUT -p tcp --dport -j ...

  4. AI (Adobe Illustrator)详细用法(五)

    最后的调整和输出. 一.改变形状工具/宽度工具/包裹工具 1.改变形状工具[整形工具] 改变形状工具可以让我们更细致的控制形状的改变. 用钢笔工具画一条曲线,并设置宽度样式等. 如果想让这条曲线形状变 ...

  5. Booth Multiplication Algorithm [ASM-MIPS]

    A typical implementation Booth's algorithm can be implemented by repeatedly adding (with ordinary un ...

  6. Scikit-Learn模块学习笔记——数据预处理模块preprocessing

    preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, ...

  7. jsp考试的错题

    (选择一项) A: B: C: D: 正确答案是 A,首先,session的出现确实是为了解决HTTP无法保持客户状态的特点:因此A选项正确:用户信息也是客户状态的一部分,所以由A可以看出B的说法就不 ...

  8. SOAP-XML请求(iOS应用下集成携程api)

    用携程机票为例: 携程联盟 飞机票.门票 联盟ID:278639 站点ID:739462 密钥KEY:BE57B925-E8CE-4AA2-AC8E-3EE4BBBB686F API_URL:open ...

  9. oracle round 函数,replace()函数

    (1)如何使用 Oracle Round 函数 (四舍五入)描述 : 传回一个数值,该数值是按照指定的小数位元数进行四舍五入运算的结果.SELECT ROUND( number, [ decimal_ ...

  10. mysql密码遗忘和登陆报错问题

    mysql登录密码忘记,其实解决办法很简单,只需要在mysql的主配置文件my.cnf里添加一行"跳过授权表"的参数选择即可! 在my.cnf中添加下面一行:[root@test- ...