Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员。

结    构
二进制
召回率
100%
方    法
哈希函数

简介

编辑

Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员。如果检测结果为是,该元素不一定在集合中;但如果检测结果为否,该元素一定不在集合中。因此Bloom filter具有100%的召回率。这样每个检测请求返回有“在集合内(可能错误)”和“不在集合内(绝对不在集合内)”两种情况,可见 Bloom filter 是牺牲了正确率和时间以节省空间。

计算方法

编辑

如需要判断一个元素是不是在一个集合中,我们通常做法是把所有元素保存下来,然后通过比较知道它是不是在集合内,链表、树都是基于这种思路,当集合内元素个数的变大,我们需要的空间和时间都线性变大,检索速度也越来越慢。 Bloom filter 采用的是哈希函数的方法,将一个元素映射到一个 m 长度的阵列上的一个点,当这个点是 1 时,那么这个元素在集合内,反之则不在集合内。这个方法的缺点就是当检测的元素很多的时候可能有冲突,解决方法就是使用 k 个哈希 函数对应 k 个点,如果所有点都是 1 的话,那么元素在集合内,如果有 0 的话,元素则不在集合内。

优点缺点

编辑

Bloom filter 优点就是它的插入和查询时间都是常数,另外它查询元素却不保存元素本身,具有良好的安全性。它的缺点也是显而易见的,当插入的元素越多,错判“在集合内”的概率就越大了,另外 Bloom filter 也不能删除一个元素,因为多个元素哈希的结果可能在 Bloom filter 结构中占用的是同一个位,如果删除了一个比特位,可能会影响多个元素的检测。

简单例子

编辑

下面是一个简单的 Bloom filter 结构,开始时集合内没有元素
当来了一个元素 a,进行判断,这里哈希函数有两个,计算出对应的比特位上为 0 ,即是 a 不在集合内,将 a 添加进去:
之后的元素,要判断是不是在集合内,也是同 a 一样的方法,只有对元素哈希后对应位置上都是 1 才认为这个元素在集合内(虽然这样可能会误判):
随着元素的插入,Bloom filter 中修改的值变多,出现误判的几率也随之变大,当新来一个元素时,满足其在集合内的条件,即所有对应位都是 1 ,这样就可能有两种情况,一是这个元素就在集合内,没有发生误判;还有一种情况就是发生误判,出现了哈希碰撞,这个元素本不在集合内。

bloom filter的更多相关文章

  1. Bloom Filter:海量数据的HashSet

    Bloom Filter一般用于数据的去重计算,近似于HashSet的功能:但是不同于Bitmap(用于精确计算),其为一种估算的数据结构,存在误判(false positive)的情况. 1. 基本 ...

  2. 探索C#之布隆过滤器(Bloom filter)

    阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是 ...

  3. Bloom Filter 布隆过滤器

    Bloom Filter 是由伯顿.布隆(Burton Bloom)在1970年提出的一种多hash函数映射的快速查找算法.它实际上是一个很长的二进制向量和一些列随机映射函数.应用在数据量很大的情况下 ...

  4. Bloom Filter学习

    参考文献: Bloom Filters - the math    http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html    B ...

  5. 【转】探索C#之布隆过滤器(Bloom filter)

    原文:蘑菇先生,http://www.cnblogs.com/mushroom/p/4556801.html 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量 ...

  6. Bloom Filter 概念和原理

    Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员.如果检测结果为是,该元素不一定 ...

  7. 【转】Bloom Filter布隆过滤器的概念和原理

    转自:http://blog.csdn.net/jiaomeng/article/details/1495500 之前看数学之美丽,里面有提到布隆过滤器的过滤垃圾邮件,感觉到何其的牛,竟然有这么高效的 ...

  8. [爬虫学习笔记]基于Bloom Filter的url去重模块UrlSeen

            Url Seen用来做url去重.对于一个大的爬虫系统,它可能已经有百亿或者千亿的url,新来一个url如何能快速的判断url是否已经出现过非常关键.因为大的爬虫系统可能一秒钟就会下载 ...

  9. bloom filter 详解[转]

    Bloom Filter概念和原理 焦萌 2007年1月27日 Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.Bloom ...

随机推荐

  1. 讲讲js中的逻辑与(&&)以及逻辑或(||)

    前几天看到一个函数,百思不得其解,今天早上醒来看了本js的书,正好讲到操作符的用法,给大家分享下js中的&&,||,和我们用的其他的编程语言还是有点区别的. 直接上那个函数的代码: f ...

  2. iOS获取本地沙盒视频封面图片

    最近做了个小应用,有涉及到本地视频播放及列表显示. 其中一个知识点就是获取本地存储视频,用来界面中的封面显示. 记录如下: -(UIImage*) thumbnailImageForVideo:(NS ...

  3. Android开发中的Json字符串与复杂的嵌套对象互转。

    Gson 可能是大家都觉得比较简单吧.我发现用JSONObject和网上下载的JSONHelper类使用起来很无语,只能解析简单的单层对象,如果有嵌套的就不能直转转成可用对象了.所以网上找了一会儿,发 ...

  4. Linux软件安装-yum安装

    虽然RPM包安装软件很方便.快捷,但是还是需要现有安装包才能安装.为了更为方便的安装软件,发展出了利用网络自动安装的方式--yum安装. 使用yum安装的前提是机器可以上网. 1.配置yum源 在/e ...

  5. CentOS下mysql默认安装位置

    如果采用RPM包安装,安装路径应在/usr/share/mysql目录下 mysqldump文件位置:/usr/bin/mysqldump mysqli配置文件: /etc/my.cnf或/usr/s ...

  6. position:absolute/relative/fixed小结

    1.绝对定位:position:absolute; 当一个div块的位置被定义为绝对定位absolute时,也就意味着它失去了文档流的位置,后面的文档流会紧跟着补上来接替它的位置.如果上下左右的绝对偏 ...

  7. Android 实现页面的延时跳转

    Android APP在初次使用的时候往往会出现APP的首页标志,然后几秒之后进入导航页,今天就记录一下,首页的延时跳转的两种方法: 第一种使用Handler延时跳转,在onCreate的方法中加入一 ...

  8. 使用while循环语句和变量输出九九乘法表

    输出的结果如下:

  9. Linux常用命令学习

    1.ls命令 就是list的缩写,通过ls 命令不仅可以查看linux文件夹包含的文件,而且可以查看文件权限(包括目录.文件夹.文件权限)查看目录信息等等 常用参数搭配: ls -a 列出目录所有文 ...

  10. 利用MySQL存储过程分割字符串

    (转)http://tec.5lulu.com/detail/104krn1e6p2w78d77.html 现有一段字符串,如apple,banana,orange,pears,grape,要把它按照 ...