题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i][j-1],要求A[n][m]。

解法:看到n<=10和m<=10^9 应该对矩阵有些想法,现在我们假设要求A[a][b],则A[a][b] = A[a][b-1] + A[a-1][b] = A[a][b-1] + A[a-1][b-1] + A[a-2][b] = ...

这样相当于右图:,红色部分为绿色部分之和,而顶上的绿色部分很好求,左边的绿色部分(最多10个)其实就是:A[1][m-1],A[2][m-1]..A[n][m-1],即对每个1<=i<=n, A[i][m]都可由A[1][m-1],A[2][m-1]..A[n][m-1],于是建立12*12的矩阵:

,将中间矩阵求m-1次幂,与右边[A[0][1],A[1][1]..A[n][1],3]^T相乘,结果就可以得出了。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define Mod 10000007
#define SMod Mod
#define lll __int64
using namespace std; int n,m;
lll a[],sum[]; struct Matrix
{
lll m[][];
Matrix()
{
memset(m,,sizeof(m));
for(int i=;i<=n+;i++)
m[i][i] = 1LL;
}
}; Matrix Mul(Matrix a,Matrix b)
{
Matrix res;
int i,j,k;
for(i=;i<=n+;i++)
{
for(j=;j<=n+;j++)
{
res.m[i][j] = ;
for(k=;k<=n+;k++)
res.m[i][j] = (res.m[i][j]+(a.m[i][k]*b.m[k][j])%SMod + SMod)%SMod;
}
}
return res;
} Matrix fastm(Matrix a,int b)
{
Matrix res;
while(b)
{
if(b&)
res = Mul(res,a);
a = Mul(a,a);
b >>= ;
}
return res;
} int main()
{
int i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{
sum[] = ;
for(i=;i<=n;i++)
{
scanf("%I64d",&a[i]);
sum[i] = (sum[i-] + a[i]);
}
lll suma = sum[n];
if(m == )
{
printf("%I64d\n",(233LL+suma)%Mod);
continue;
}
Matrix base;
memset(base.m,,sizeof(base.m));
for(i=;i<=n+;i++)
base.m[i][] = 10LL;
for(i=;i<=n+;i++)
{
for(j=;j<=n+;j++)
{
if(i >= j)
base.m[i][j] = 1LL;
}
}
for(i=;i<=n+;i++)
base.m[i][n+] = 1LL;
Matrix Right;
memset(Right.m,,sizeof(Right.m));
Right.m[][] = 233LL;
for(i=;i<=n+;i++)
Right.m[i][] = (233LL+sum[i-])%Mod;
Right.m[n+][] = 3LL;
Matrix ans = fastm(base,m-);
ans = Mul(ans,Right);
printf("%I64d\n",ans.m[n+][]%Mod);
}
return ;
}

HDU 5015 233 Matrix --矩阵快速幂的更多相关文章

  1. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  2. 233 Matrix 矩阵快速幂

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  3. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  4. HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memor ...

  5. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  6. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  7. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

  8. HDU 5015 233 Matrix(网络赛1009) 矩阵快速幂

    先贴四份矩阵快速幂的模板:http://www.cnblogs.com/shangyu/p/3620803.html http://www.cppblog.com/acronix/archive/20 ...

  9. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

随机推荐

  1. div,span,p等转换成可编辑

    当前它能够将任意不可编辑的标签(span.div.p...等)转换成可编辑的text input.password.textarea.下拉列表(drop-down list)等标签.你可以利用它的ed ...

  2. CRM 2013 中业务流程的

    在CRM 2013 中有一个新功能就业务流程,它可以引导用户在既定好的业务规则下操作表单,实现业务之前的衔接.并且让衔接可以视化,能清楚定位到当前的流程在那个节点.我们在配置视图的时候可以将流程阶段放 ...

  3. python中的迭代与递归

    遇到一个情况,需要进行递归操作,但是呢递归次数非常大,有一万多次.先不说一万多次递归,原来的测试代码是java的,没装jdk和编译环境,还是用python吧 先看下原本的java代码: public ...

  4. 通过API找出Autodesk Vault中某个用户组可以访问的Vault

    首先在Vault Explorer中可以这样查看和更改某个用户组有权访问的vault Tools –> Administration –> Global Settings –> Gr ...

  5. Android消息机制入门

    接着处理<Android 网络图片查看器>中出现的问题 使用添加子线程,修改原程序: package com.wuyudong.imagesviewer; import java.io.I ...

  6. Net.Sf.Json java Object to JsonObject

    public class People{ private String name; public void setName(String name){ this.name = name; } publ ...

  7. Android常用抓包工具之TcpDump

    ➠更多技术干货请戳:听云博客 做为一个测试人员,工作中经常会用到数据抓包工具来进行数据分析和验证,下面就简单介绍一下工作中常用的抓包工具. TcpDump抓包 Tcpdump是一个用于截取网络分组,并 ...

  8. 【代码笔记】iOS-两个滚动条,上下都能滑动

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...

  9. 【原+转】用CMake代替makefile进行跨平台交叉编译

    在开始介绍如何使用CMake编译跨平台的静态库之前,先讲讲我在没有使用CMake之前所趟过的坑.因为很多开源的程序,比如png,都是自带编译脚本的.我们可以使用下列脚本来进行编译: ./configu ...

  10. Web性能--TCP的构成

    前言:阅读<Web性能权威指南>摘录笔记.在这本书开篇就读到第一句话令人印象深刻: "合格的开发者知道怎么做,而优秀的开发者知道为什么那么做". 内容大纲: 1.因特网 ...