HDU 5015 233 Matrix --矩阵快速幂
题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i][j-1],要求A[n][m]。
解法:看到n<=10和m<=10^9 应该对矩阵有些想法,现在我们假设要求A[a][b],则A[a][b] = A[a][b-1] + A[a-1][b] = A[a][b-1] + A[a-1][b-1] + A[a-2][b] = ...
这样相当于右图:
,红色部分为绿色部分之和,而顶上的绿色部分很好求,左边的绿色部分(最多10个)其实就是:A[1][m-1],A[2][m-1]..A[n][m-1],即对每个1<=i<=n, A[i][m]都可由A[1][m-1],A[2][m-1]..A[n][m-1],于是建立12*12的矩阵:
,将中间矩阵求m-1次幂,与右边[A[0][1],A[1][1]..A[n][1],3]^T相乘,结果就可以得出了。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define Mod 10000007
#define SMod Mod
#define lll __int64
using namespace std; int n,m;
lll a[],sum[]; struct Matrix
{
lll m[][];
Matrix()
{
memset(m,,sizeof(m));
for(int i=;i<=n+;i++)
m[i][i] = 1LL;
}
}; Matrix Mul(Matrix a,Matrix b)
{
Matrix res;
int i,j,k;
for(i=;i<=n+;i++)
{
for(j=;j<=n+;j++)
{
res.m[i][j] = ;
for(k=;k<=n+;k++)
res.m[i][j] = (res.m[i][j]+(a.m[i][k]*b.m[k][j])%SMod + SMod)%SMod;
}
}
return res;
} Matrix fastm(Matrix a,int b)
{
Matrix res;
while(b)
{
if(b&)
res = Mul(res,a);
a = Mul(a,a);
b >>= ;
}
return res;
} int main()
{
int i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{
sum[] = ;
for(i=;i<=n;i++)
{
scanf("%I64d",&a[i]);
sum[i] = (sum[i-] + a[i]);
}
lll suma = sum[n];
if(m == )
{
printf("%I64d\n",(233LL+suma)%Mod);
continue;
}
Matrix base;
memset(base.m,,sizeof(base.m));
for(i=;i<=n+;i++)
base.m[i][] = 10LL;
for(i=;i<=n+;i++)
{
for(j=;j<=n+;j++)
{
if(i >= j)
base.m[i][j] = 1LL;
}
}
for(i=;i<=n+;i++)
base.m[i][n+] = 1LL;
Matrix Right;
memset(Right.m,,sizeof(Right.m));
Right.m[][] = 233LL;
for(i=;i<=n+;i++)
Right.m[i][] = (233LL+sum[i-])%Mod;
Right.m[n+][] = 3LL;
Matrix ans = fastm(base,m-);
ans = Mul(ans,Right);
printf("%I64d\n",ans.m[n+][]%Mod);
}
return ;
}
HDU 5015 233 Matrix --矩阵快速幂的更多相关文章
- HDU - 5015 233 Matrix (矩阵快速幂)
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- 233 Matrix 矩阵快速幂
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- 233 Matrix(矩阵快速幂+思维)
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- HDU5015 233 Matrix —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others) Memor ...
- HDU.1575 Tr A ( 矩阵快速幂)
HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...
- HDU5015 233 Matrix(矩阵高速幂)
HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...
- hdu 3117 Fibonacci Numbers 矩阵快速幂+公式
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...
- HDU 5015 233 Matrix(网络赛1009) 矩阵快速幂
先贴四份矩阵快速幂的模板:http://www.cnblogs.com/shangyu/p/3620803.html http://www.cppblog.com/acronix/archive/20 ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
随机推荐
- [实现]Javascript代码的另一种压缩与加密方法——代码图片转换
代码=图片 图片=代码 JS代码对于喜欢F12的同志来说,连个遮羞布都没有... 虽然把代码变成图片也仅仅只是增加一层纱布而已...但这方法还是挺好玩的,而且代码也被压缩了一点. 第一次看到[图片=代 ...
- css伪元素实现tootip提示框
先看效果 废话不说,直接上图(请把鼠标移到我的头像上),看看今天要做的是什么: 实现原理 这些提示框原理都是一样的,且只需一个div标签就能实现,当然也有笨方法,比如用多个标签相互重叠.遮盖,或者干脆 ...
- jQuery实用小技巧-获取选中的的下拉框和返回头部滑动动画
//获取选中的下拉框 $('#someElement').find('option:selected'); $('#someElement option:selected'); //返回头部滑动动画 ...
- 【原】iOS动态性(二):运行时runtime初探(强制获取并修改私有变量,强制增加及修改私有方法等)
OC是运行时语言,只有在程序运行时,才会去确定对象的类型,并调用类与对象相应的方法.利用runtime机制让我们可以在程序运行时动态修改类.对象中的所有属性.方法,就算是私有方法以及私有属性都是可以动 ...
- HttpClient示例
<%@page import="com.sun.xml.ws.client.BindingProviderProperties"%> <%@page conten ...
- Sharepoint学习笔记—习题系列--70-576习题解析 -(Q25-Q28)
Question 25 You are designing a SharePoint 2010 farm in your organization. You need to design the li ...
- 【代码笔记】iOS-剧幕拉开形的首页
一,工程图. 二,代码. RootViewController.h #import <UIKit/UIKit.h> #import "UIImage+SplitImageInto ...
- 【原】ios的hitTest方法以及不规则区域内触摸事件处理方法
概述 在正常的使用场景中,我们处理了比较多的矩形区域内触摸事件,比如UIButton.UIControl.一般来说,这些控件的图形以及触摸区域都是矩形或者圆角矩形的.但是在一些特殊应用场景中我们有时不 ...
- iOS-工作经验+资料分享(长期更新)
在此记录工作中的一些经验和技术资料 长期更新 欢迎各位业内朋友指正.交流技术上的问题 0.苹果开发联盟电话 4006 701855 1.轻易不用使用tableViewController,因为改变他自 ...
- 1.5 基础知识——GP2.3 提供资源(Resources) 与 GP2.4 分配职责(Responisbility)
摘要: 没有资源和落实权责,将无法做好事情,这是很多公司很多人都懂的道理.但很多做CMMI改进的公司,号称很多核心人员负责过程改进,其实是兼职挂牌而已,有些甚至招聘应届生作为过程改进的主力…… 如此这 ...