4423: [AMPPZ2013]Bytehattan

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 144  Solved: 103
[Submit][Status][Discuss]

Description

比特哈顿镇有n*n个格点,形成了一个网格图。一开始整张图是完整的。
有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通。

Input

第一行包含两个正整数n,k(2<=n<=1500,1<=k<=2n(n-1)),表示网格图的大小以及操作的个数。
接下来k行,每行包含两条信息,每条信息包含两个正整数a,b(1<=a,b<=n)以及一个字符c(c=N或者E)。
如果c=N,表示删除(a,b)到(a,b+1)这条边;如果c=E,表示删除(a,b)到(a+1,b)这条边。
数据进行了加密,对于每个操作,如果上一个询问回答为TAK或者这是第一个操作,那么只考虑第一条信息,否则只考虑第二条信息。
数据保证每条边最多被删除一次。

Output

输出k行,对于每个询问,如果仍然连通,输出TAK,否则输出NIE。

Sample Input

3 4
2 1 E 1 2 N
2 1 N 1 1 N
3 1 N 2 1 N
2 2 N 1 1 N

Sample Output

TAK
TAK
NIE
NIE

HINT

Source

鸣谢Claris提供试题

Solution

比较厉害的思路;

维护图的连通性,很容易想到并查集,但是并查集并不支持删边,或者用线段树?(堵塞的交通)

应该不是,那么考虑转化删边为加边,图是平面图,利用其性质

转成对偶图,把每个方格围城的面看做一个点,就可以使删边操作变成加边操作,就会方便多了,剩下的按照题目要求搞搞就好

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define maxn 1510
int fa[maxn*maxn],n,k;
void init(){for (int i=; i<=n*n; i++) fa[i]=i;}
int find(int x){if (fa[x]==x) return x; return fa[x]=find(fa[x]);}
void merge(int x,int y){int f1=find(x),f2=find(y); fa[f1]=f2;}
int pos[maxn][maxn];
int main()
{
scanf("%d %d",&n,&k);
int cnt=;
for (int i=; i<n; i++)
for (int j=; j<n; j++)
pos[i][j]=cnt++;
init(); int ans=;
for (int i=; i<=k; i++)
{
int a1,b1,a2,b2,p1,p2; char c1[],c2[];
scanf("%d%d%s%d%d%s",&a1,&b1,c1,&a2,&b2,c2);
if (ans)
if (c1[]=='E') p1=pos[a1][b1],p2=pos[a1][b1-];
else p1=pos[a1][b1],p2=pos[a1-][b1];
else
if (c2[]=='E') p1=pos[a2][b2],p2=pos[a2][b2-];
else p1=pos[a2][b2],p2=pos[a2-][b2];
//printf("%d %d\n",p1,p2);
if (find(p1)!=find(p2)) ans=,merge(p1,p2); else ans=;
if (ans) puts("TAK"); else puts("NIE");
}
return ;
}

一开始自己的写法好像出了点问题...

【BZOJ-4423】Bytehattan 并查集 + 平面图转对偶图的更多相关文章

  1. BZOJ 4423: [AMPPZ2013]Bytehattan 并查集+平面图转对偶图

    4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec  Memory Limit: 128 MB Submit: 277  Solved: 183 [Submit ...

  2. bzoj 3237 连通图 - 并查集 - 线段树

    Input Output Sample Input 4 5 1 2 2 3 3 4 4 1 2 4 3 1 5 2 2 3 2 1 2 Sample Output Connected Disconne ...

  3. BZOJ 1050 旅行(并查集)

    很好的一道题.. 首先把边权排序.然后枚举最小的边,再依次添加不小于该边的边,直到s和t联通.用并查集维护即可. # include <cstdio> # include <cstr ...

  4. BZOJ 1015 星球大战(并查集)

    正着不好搞,考虑倒着搞.倒着搞就是一个并查集. # include <cstdio> # include <cstring> # include <cstdlib> ...

  5. BZOJ 4668: 冷战 并查集&&暴力LCA(雾)

    利用并查集按秩合并,保存每个点合并的时间: 求时间时,就一直跳u=fa[u],并记录路径上时间的最大值,代表最后一次合并的时间 #include<cstdio> #include<i ...

  6. bzoj 4668 冷战——并查集结构

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4668 不路径压缩,维护并查集的树的结构,查询链上最大值.按秩合并就可以暴爬. #includ ...

  7. bzoj 4668 冷战 —— 并查集按秩合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4668 按秩合并维护并查集的树结构,然后暴力找路径上的最大边权即可. 代码如下: #inclu ...

  8. BZOJ 4668: 冷战 并查集启发式合并/LCT

    挺好想的,最简单的方法是并查集启发式合并,加暴力跳父亲. 然而,这个代码量比较小,比较好写,所以我写了 LCT,更具挑战性. #include <cstdio> #include < ...

  9. 【BZOJ】2007: [Noi2010]海拔(平面图转对偶图)

    题目 传送门:QWQ 分析 左上角是0,右下角是1.那么大概整张图是由0 1构成的. 那么我们要找到0和1的分界线,值就是最小割. 然后变成求原图最小割. 考虑到此题是平面图,那么就转成对偶图跑最短路 ...

随机推荐

  1. JSTL中的TLD配置和使用。

    一,JSTL介绍: JSTL标签库,是日常开发经常使用的,也是众多标签中性能最好的.把常用的内容,放在这里备份一份,随用随查.尽量做到不用查,就可以随手就可以写出来.这算是Java程序员的基本功吧,一 ...

  2. 007商城项目:商品列表查询-需求分析,以及Spinmvc的访问知识

    我们之前已经整合了ssm框架并且调试已经好了,接下来我们实现商品列表的查询. 我们先进入到首页: 方法如下: 我们看到我们把所有的jsp页面都是放在: 这些页面都是放在WEB-IN下面的,也就是说这些 ...

  3. Kafka是分布式发布-订阅消息系统

    Kafka是分布式发布-订阅消息系统 https://www.biaodianfu.com/kafka.html Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apa ...

  4. Dell 服务器做Raid

    Dell 服务器做Raid DELL R720 服务器 RAID阵列卡配置介绍 (H310) 关于 RAID 5 与热备份(Hot Spare) 在不同RAID组间使用热备盘——Global Hot ...

  5. IE下默认TD colspan rowspan值为1

    IE下默认TD colspan rowspan值为1,即使这个TD没有合并没有rowspan,colspan属性,其值都为1,chrome下正常. 判断是否rowspan colspan为TD.get ...

  6. mac 下卸载mysql的方法

    今天在mac上瞎折腾时,把mysql玩坏了,想卸载重装,却发现找不到卸载程序,百度了下,将操作步骤备份于此: cd ~/ sudo rm /usr/local/mysqlsudo rm -rf /us ...

  7. C#操作XML方法集合

    一 前言 先来了解下操作XML所涉及到的几个类及之间的关系  如果大家发现少写了一些常用的方法,麻烦在评论中指出,我一定会补上的!谢谢大家 * 1 XMLElement 主要是针对节点的一些属性进行操 ...

  8. C/C++代码覆盖工具gcov与lcov入门

    C/C++代码覆盖工具gcov与lcov入门 gcov是一个可用于C/C++的代码覆盖工具,是gcc的内建工具.下面介绍一下如何利用gcov来收集代码覆盖信息.想要用gcov收集代码覆盖信息,需要在g ...

  9. Bootstrap中glyphicons-halflings-regular.woff字体报404错notfound

    今天查看网站的源代码,发现有个glyphicons-halflings-regular.woff文件没有找到,因为我的网站使用了bootstrap的Glyphicons 字体图标,因此需要加载Glyp ...

  10. MyEclipse10连接数据库

    连接oracle数据库 DB窗口>>右键:新建