DeepLearning之路(二)SoftMax回归
Softmax回归
1. softmax回归模型
softmax回归模型是logistic回归模型在多分类问题上的扩展(logistic回归解决的是二分类问题)。
对于训练集
,有
。
对于给定的测试输入
,我们相拥假设函数针对每一个类别j估算出概率值
。也就是说,我们估计
得每一种分类结果出现的概率。因此我们的假设函数将要输入一个
维的向量来表示这
个估计得概率值。假设函数
形式如下:

其中
是模型的参数。
这一项对概率分布进行归一化,舍得所有概率之和为1.
softmax回归的代价函数:

上述公式是logistic回归代价函数的推广。logistic回归代价函数可以改为:

可以看到,softmax代价函数与logistic代价函数在形式上非常类似,只是在softmax损失函数中对类标记的
个可能值进行了累加。注意在softmax回归中将
分类为
的概率为:

有了上面的偏导数公式以后,我们就可以将它代入到梯度下降法等算法中,来最小化
。 例如,在梯度下降法的标准实现中,每一次迭代需要进行如下更新: 
2. 权重衰减
在实际应用中,为了使算法实现更简单清楚,往往保留所有参数
,而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。

我们通过添加一个权重衰减项
来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:
有了这个权重衰减项以后 (
),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为
是凸函数,梯度 下降法和 L-BFGS 等算法可以保证收敛到全局最优解。
为了使用优化算法,我们需要求得这个新函数
的导数,如下:

通过最小化
,我们就能实现一个可用的 softmax 回归模型。
3. 模型选择
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。
转自:http://www.cnblogs.com/Rosanna/p/3865212.html
参考:http://deeplearning.stanford.edu/wiki/index.php/Softmax回归
DeepLearning之路(二)SoftMax回归的更多相关文章
- DL基础补全计划(二)---Softmax回归及示例(Pytorch,交叉熵损失)
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- UFLDL深度学习笔记 (二)SoftMax 回归(矩阵化推导)
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细 ...
- 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...
- 机器学习(2):Softmax回归原理及其实现
Softmax回归用于处理多分类问题,是Logistic回归的一种推广.这两种回归都是用回归的思想处理分类问题.这样做的一个优点就是输出的判断为概率值,便于直观理解和决策.下面我们介绍它的原理和实现. ...
- DeepLearning之路(三)MLP
DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/articl ...
- DNN:逻辑回归与 SoftMax 回归方法
UFLDL Tutorial 翻译系列:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 第四章:SoftMax回归 简介: ...
- Softmax回归
Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutor ...
- Softmax回归(Softmax Regression)
转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件 ...
- Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...
随机推荐
- 【数论】Miller_Rabin
Miller_Rabin素数测试 Miller_Rabin判断单个素数的方法运用了费马小定理,可以说非常之快了. Miller_Rabin曾经被称作“黑科技”,但是根据费马小定理其实完 ...
- Android MimeType的用法和几种类型
关于MIME TYPE描述 多用途互联网邮件扩展(MIME,Multipurpose Internet Mail Extensions)是一个互联网标准,它扩展了电子邮件标准,使其能够支持非ASCII ...
- 搭建android开发环境
任何一个程序的开端都要从搭建开发环境开始,这样你就可以进行实战练习了,并且搭建完后即快速来一个项目HelloWorld, 哈哈,话不多说了,进入正题 android环境的安装主要分3步骤: 1.下载和 ...
- javaWeb 使用 filter 处理全站乱码问题
1. web.xml文件中的配置 <filter> <filter-name>CharacterEncodingFilter</filter-name> <f ...
- 剑指offer——变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 问题分析 由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳 ...
- xcode 中 的工程模板
基于视图的应用程序(view-based application) 应用程序如果仅使用一个视图,应该使用这个模板.一个简单的视图控制器会管理应用程序的主视图,而界面布置则使用一个Interface B ...
- [转]为何需要调用“super viewDidLoad
转载地址:http://liwpk.blog.163.com/blog/static/36326170201165104413314/ - (void)didReceiveMemoryWarnin ...
- KTV项目总结
KTV项目总结 大约一个星期前吧,老湿说我们要开始做KTV项目了,说是KTV项目是贯穿整个学的内容的,会所的,要我们认真去对待,一开始,第一天搭前台界面,总是有不会的,要去问问,这个要用什么控件啊,用 ...
- 浙江理工2015.12校赛-A
孙壕请一盘青岛大虾呗 Time Limit: 5 Sec Memory Limit: 128 MB Submit: 577 Solved: 244 Description 话说那一年zstu与gdut ...
- lipo 合并target为Simulator和Device编译的静态库
进入项目对应的Build目录后,以下指令: $lipo -create Debug-iphoneos/libSalamaDeveloper.a Debug-iphonesimulator/libSal ...