题目链接: 传送门

Prime Land

Time Limit: 1000MS     Memory Limit: 10000K

Description

Everybody in the Prime Land is using a prime base number system. In this system, each positive integer x is represented as follows: Let {pi}i=0,1,2,... denote the increasing sequence of all prime numbers. We know that x > 1 can be represented in only one way in the form of product of powers of prime factors. This implies that there is an integer kx and uniquely determined integers ekx, ekx-1, ..., e1, e0, (ekx > 0), that The sequence
(ekx, ekx-1, ... ,e1, e0)
is considered to be the representation of x in prime base number system.
It is really true that all numerical calculations in prime base number system can seem to us a little bit unusual, or even hard. In fact, the children in Prime Land learn to add to subtract numbers several years. On the other hand, multiplication and division is very simple.
Recently, somebody has returned from a holiday in the Computer Land where small smart things called computers have been used. It has turned out that they could be used to make addition and subtraction in prime base number system much easier. It has been decided to make an experiment and let a computer to do the operation ``minus one''.
Help people in the Prime Land and write a corresponding program.
For practical reasons we will write here the prime base representation as a sequence of such pi and ei from the prime base representation above for which ei > 0. We will keep decreasing order with regard to pi.

Input

The input consists of lines (at least one) each of which except the last contains prime base representation of just one positive integer greater than 2 and less or equal 32767. All numbers in the line are separated by one space. The last line contains number 0.

Output

The output contains one line for each but the last line of the input. If x is a positive integer contained in a line of the input, the line in the output will contain x - 1 in prime base representation. All numbers in the line are separated by one space. There is no line in the output corresponding to the last ``null'' line of the input.

Sample Input

17 1
5 1 2 1
509 1 59 1
0

Sample Output

2 4
3 2
13 1 11 1 7 1 5 1 3 1 2 1

题目大意:

每个样例一行输入,第一个数代表底数第二个数是系数,以此类推,读到换行符结束,问这行样例最后组成的数字的值减一,将其质因数从大到小输出。
很裸的题,跑一边埃氏筛选法筛选出素数,然后再把读入的样例转换为数值后就可以分解了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAX = 33000;
bool is_prime[MAX];
int prime[MAX];

int pow(int x,int n)
{
    int res = 1;
    while (n > 0)
    {
        if (n & 1)
        {
            res *= x;
        }
        x *= x;
        n >>= 1;
    }
    return res;
}

int main()
{
    int x,y,maxx,sum = 1,p = 0;
    int cnt[MAX];
    char ch;
    memset(is_prime,true,sizeof(is_prime));
    memset(prime,0,sizeof(prime));
    is_prime[0] = is_prime[1] = false;
    for (int i = 2;i <= MAX;i++)
    {
        if (is_prime[i])
        {
            prime[p++] = i;
            for (int j = 2 * i;j <= MAX;j += i)
            {
                is_prime[j] = false;
            }
        }
    }
    while (1)
    {
        scanf("%d",&x);
        if (x == 0)
            break;
        scanf("%d",&y);
        sum *= pow(x,y);
        ch = getchar();
        if (ch == '\n')
        {
            maxx = 0;
            memset(cnt,0,sizeof(cnt));
            sum -= 1;
            int tmpsum = sum;
            for (int i = 0;i < tmpsum;i++)
            {
                while (sum % prime[i] == 0)
                {
                    cnt[i]++;
                    sum /= prime[i];
                    maxx = max(maxx,i);
                    //cout << sum << endl;
                }
                if (sum == 0 || sum == 1)
                    break;
            }
            //cout << "OK" << endl;
            bool first = true;
            for (int i = maxx;i >= 0;i--)
            {
                if (cnt[i])
                {
                    first?printf("%d %d",prime[i],cnt[i]):printf(" %d %d",prime[i],cnt[i]);
                    first = false;
                }
            }
            printf("\n");
            sum = 1;
        }
    }
    return 0;
}

POJ 1365 Prime Land(数论)的更多相关文章

  1. [POJ 1365] Prime Land

    Prime Land Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3211   Accepted: 1473 Descri ...

  2. POJ 1365 Prime Land(整数拆分)

    题意:感觉题意不太好懂,题目并不难,就是给一些p和e,p是素数,e是指数,然后把这个数求出来,设为x,然后让我们逆过程输出x-1的素数拆分形式,形式与输入保持一致. 思路:素数打表以后正常拆分即可. ...

  3. 筛选法 || POJ 1356 Prime Land

    英文题读不懂题==质数幂的形式给你一个数 把它减一再用质数幂的形式表示出来 *解法:质数从小到大模拟除一遍,输入有点别扭 #include <iostream> #include < ...

  4. [暑假集训--数论]poj1365 Prime Land

    Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...

  5. 数学--数论--POJ1365——Prime Land

    Description Everybody in the Prime Land is using a prime base number system. In this system, each po ...

  6. 双向广搜 POJ 3126 Prime Path

      POJ 3126  Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16204   Accepted ...

  7. poj 2689 Prime Distance(大区间素数)

    题目链接:poj 2689 Prime Distance 题意: 给你一个很大的区间(区间差不超过100w),让你找出这个区间的相邻最大和最小的两对素数 题解: 正向去找这个区间的素数会超时,我们考虑 ...

  8. POJ 3126 Prime Path(素数路径)

    POJ 3126 Prime Path(素数路径) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 The minister ...

  9. Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test

    POJ 1811 Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 32534   Accepted: 8 ...

随机推荐

  1. 无法将分支 master 发布到远程 origin,因为远程存储库中已存在具有同一名称的分支

    无法将分支 master 发布到远程 origin,因为远程存储库中已存在具有同一名称的分支.发布此分支将导致远程存储库中的分支发生非快进更新. 第一次用oschina的git设置完远程仓库后提交出现 ...

  2. 【JavaEE企业应用实战学习记录】getConnListener

    Listener:当Web应用在Web容器中运行时,Web应用内部会不断地发生各种事件,如Web应用被启动.Web应用被停止,用户Session开始,用户session结束.用户请求到达等,这些对We ...

  3. go-- 用go-mssql驱动连接sqlserver数据库

    import _ "github.com/denisenkom/go-mssqldb" import ( "crypto/cipher" "crypt ...

  4. 动态sql语句输出参数

    ) declare @cou int ) ' set @sql='select @count=count(*) from emp where id=@id' exec sp_executesql @s ...

  5. 给菜单加个优雅的unselect事件

    先上图,说场景 假设默认选中的是item1,我现在选中item3了,有时候需要对item1做一些别的处理.常见的做法是,切换选中状态前找到当前选中(item1),或者每次选中后选中的项记录在中间变量. ...

  6. git介绍

    简介:Git是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目.Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件.Git ...

  7. [转]easyui tree 模仿ztree 使用扁平化加载json

    原文地址:http://my.oschina.net/acitiviti/blog/349377 参考文章:http://www.jeasyuicn.com/demo/treeloadfilter.h ...

  8. 关于使用 lua 脚本抢红包

    1 java代码 package com.robert.RedisTest; import redis.clients.jedis.Jedis; public class RedisClient { ...

  9. userAgent收集

    UserAgent AppleWebKit,Gecko,Trident,Presto http://www.httpuseragent.org/list/ 谷歌:360? Mozilla/5.0 (W ...

  10. js-读取上传文件后缀

    /** * 读取文件后缀名称,并转化成小写 * @param file_name * @returns */ function houzuiToLowerCase(file_name) { if (f ...