求sqrt()底层效率问题(二分/牛顿迭代)
偶然看见一段求根的神代码,于是就有了这篇博客;
对于求根问题,通常我们可以调用sqrt库函数,不过知其然需知其所以然,我们看一下求根的方法;
比较简单方法就是二分咯:
代码:
#include<bits/stdc++.h>
#define MAXN 100000+10
#define MAX 100000000
#define eps 1e-6
#define ll long long
using namespace std; float get_sqrt(float x)
{
float low=, up=x, mid, now;
mid=(low+up)/;
do
{
now=mid; //**now保存上一次计算的值
if(mid*mid<x) //**mid偏小,右移
{
low=mid;
}
else //**mid偏大,左移
{
up=mid;
}
mid=(low+up)/;
}while(abs(mid-now)>eps); //**两次计算的误差小于eps,mid即为所求值
return mid;
} int main(void)
{
std::ios::sync_with_stdio(false), cin.tie(), cin.tie();
float x;
cin >> x;
cout << get_sqrt(x) << endl;
return ;
}
然而虽然其计算的结果和库函数一样,然而其效率较之库函数差数百倍,当然不是我说的神代码咯;
我们再看一下牛顿迭代法如何;
假设a为需求根的数,x为其正根,则有a=x*x;即a的正根为函数f(x)=x*x-a与x轴的正交点;
由牛顿迭代法我们可以知道,可以通过(x,f(x))的切线不断逼近解;
任取一点(x0,f(x0)),其切线方程为 y=f'(x0)*(x-x0)+f(x0),其与x轴的交点为x1=x0-f(x0)/f'(x0),x1是一个比x0更接近的近似解;
依次类推,可以求出x2,x2又比x1更接近;
可以求出x3......
由此我们得出迭代公式为:x'=x-f(x)/f'(x),再带入f(x)=x*x-a得:x'=(x+a/x)/2;
代码:
#include<bits/stdc++.h>
#define MAXN 100000+10
#define MAX 100000000
#define eps 1e-6
#define ll long long
using namespace std; float get_sqrt(float a)
{
float x, now;
x=a;
do
{
now=x; //**now保存上一次的x值
x=(x+a/x)/; //**通过迭代更新x的值使其接近解
}while(abs(now-x)>eps); //**两次计算的误差小于eps,x即为所求值
return x;
} int main(void)
{
std::ios::sync_with_stdio(false), cin.tie(), cin.tie();
float x;
cin >> x;
cout << get_sqrt(x) << endl;
return ;
}
其效率较之二分高了很多,不过还是不如库函数;
神代码(效率为库函数的4倍):
#include<bits/stdc++.h>
#define MAXN 100000+10
#define MAX 100000000
#define eps 1e-6
#define ll long long
using namespace std; /*float InvSqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> 1 ); // what the fuck?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed //**可以通过减少迭代次数来用精度换取时间
#ifndef Q3_VM
#ifdef __linux__
assert( !isnan(y) ); // bk010122 - FPE?
#endif
#endif
return 1/y;
}*/ float InvSqrt(float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x; // get bits for floating VALUE
i = 0x5f375a86- (i>>); // gives initial guess y0
x = *(float*)&i; // convert bits BACK to float
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
// x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy //**可以通过减少迭代次数来用精度换取时间
return /x;
} int main(void)
{
std::ios::sync_with_stdio(false), cin.tie(), cin.tie();
float x;
cin >> x;
cout << InvSqrt(x) << endl;
return ;
}
其本质还是迭代法,不过因为那个魔鬼般的常数0x5f375a86 和 i = 0x5f375a86- (i>>1);中的位运算大大提高了其速度;
然而我并没有看懂,待以后继续研究;
求sqrt()底层效率问题(二分/牛顿迭代)的更多相关文章
- HDU.2899.Strange fuction(牛顿迭代)
题目链接 \(Description\) 求函数\(F(x)=6\times x^7+8\times x^6+7\times x^3+5\times x^2-y\times x\)在\(x\in \l ...
- 二分法和牛顿迭代实现开根号函数:OC的实现
最近有人贴出BAT的面试题,题目链接. 就是实现系统的开根号的操作,并且要求一定的误差,其实这类题就是两种方法,二分法和牛顿迭代,现在用OC的方法实现如下: 第一:二分法实现 -(double)sqr ...
- 牛顿迭代,多项式求逆,除法,开方,exp,ln,求幂
牛顿迭代 若 \[G(F_0(x))\equiv 0(mod\ x^{2^t})\] 牛顿迭代 \[F(x)\equiv F_0(x)-\frac{G(F_0(x))}{G'(F_0(x))}(mod ...
- 已知 sqrt (2)约等于 1.414,要求不用数学库,求 sqrt (2)精确到小数点后 10 位
问题:已知 sqrt (2)约等于 1.414,要求不用数学库,求 sqrt (2)精确到小数点后 10 位. 出题人:阿里巴巴出题专家:文景/阿里云 CDN 资深技术专家. 考察点:基础算法的灵活应 ...
- Codevs 1038 一元三次方程求解 NOIP 2001(导数 牛顿迭代)
1038 一元三次方程求解 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 有形如:ax3+b ...
- Poj 2976 Dropping tests(01分数规划 牛顿迭代)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...
- 【leetcode】【二分 | 牛顿迭代法】69_Sqrt(x)
题目链接:传送门 题目描述: 求Sqrt(x),返回整数值即可. [代码]: #include<bits/stdc++.h> using namespace std; ; /* int m ...
- 【XSY2680】玩具谜题 NTT 牛顿迭代
题目描述 小南一共有\(n\)种不同的玩具小人,每种玩具小人的数量都可以被认为是无限大.每种玩具小人都有特定的血量,第\(i\)种玩具小人的血量就是整数\(i\).此外,每种玩具小人还有自己的攻击力, ...
- 【loj6538】烷基计数 加强版 加强版 Burnside引理+多项式牛顿迭代
别问我为啥突然刷了道OI题,也别问我为啥花括号不换行了... 题目描述 求含 $n$ 个碳原子的本质不同的烷基数目模 $998244353$ 的结果.$1\le n\le 10^5$ . 题解 Bur ...
随机推荐
- UnicodeDecodeError: 'gbk' codec can't decode byte 0xff in position 0: illegal multibyte sequence
混淆了 python2 里边的 str 和 unicode 数据类型. 1. 对需要 str->unicode 的代码,可以在前边写上 import sys reload(sys) sys.se ...
- centos 6.5 zabbix3.0.4 监控apache
开启apache的server-status httpd.conf 末尾添加 [root@test3 /]# vim /usr/local/httpd-/conf/httpd.conf Extende ...
- Android SDK Manager 无法下载更新,或者更新速度超慢,或者待安装包列表不显示
解决方法: 转自 http://www.cnblogs.com/tc310/archive/2012/12/21/2828450.html http://jingyan.baidu.com/artic ...
- 关于python 序列 深拷贝
如果要在循环内修改正在迭代的序列(例如,复制所选的项目),建议首先制作副本.迭代序列不会隐式地创建副本.使用切片就可以很容易地做到: >>> >>> for w i ...
- Linux之Shell的算术运算
在Bash的算术运算中有以下几种方法:名称 语法 范例算术扩展 $((算术式)) r ...
- JavaScript中var关键字的使用详解
作用 声明作用:如声明个变量. 语法 ? 1 var c = 1; 省略var 在javascript中,若省略var关键字而直接赋值,那么这个变量为全局变量,哪怕是在function里定义的. ? ...
- js之作用域和面向对象
作用域 JavaScript以函数为作用域 函数的作用域在函数未被调用之前,已经创建 函数的作用域存在作用域链,并且也是在被调用之前创建 示例一 xo = "alex"; func ...
- JDBC的应用
JDBC的开发步骤: 1. 引入JDBC驱动架包 2. 程序中引入JDBC驱动类 3. 创建java与数据库的连接 4. 跟数据库交互:发送sql语句,接收数据库对sql语句的执行结果 ...
- python查找并删除相同文件-UNIQ File-script版本
今天用wxPython做了一个GUI程序,实现查找指定目录内的相同文件,主要原理是计算文件的md5值(计算前先找出文件大小相同的文件,然后计算这些文件的md5值,而不是所有文件都计算,大大减少了md5 ...
- ubuntu14.04 163sources.list
deb http://mirrors.163.com/ubuntu/ trusty main restricted universe multiverse deb http://mirrors.163 ...