RCNN:

  1. 候选区生成(Selective Search)。

    1. 分割成2000左右的候选小区域
    2. 合并规则:颜色、纹理相近,尺度均匀,合并后形状规则
  2. 特征提取。
    1. 归一候选区尺寸为227×227,归一方法。
    2. 使用在imageNet上的分类网络作为预训练网络,预训练网络输出4096维特征
    3. 预训练网络加上全连接层在分类数据集上预训练
  3. 每一类使用SVM分类器
    1. 对预训练网络输出的4096维特征,使用多个SVM分类器进行判断
    2. 对于负样本过多的问题,使用hard negative mining,将重叠框小于阈值的作为负类。
  4. 位置回归
    1. 训练回归器输出x,y,d,h偏移量

fast RCNN

  1. 使用整张图片传入网络提取特征
  2. 使用Selective search等方法得到候选区域,复用前面阶段的网络特征
  3. 对候选区使用Roi Pooling层规定尺寸图像(全连接层需要相同大小的输入)
  4. 输入到两个并行的全连接层中,分别计算损失

例如:
对于输入图像:

候选区域:

最后一个卷积层:

放大

归一尺寸的候选区域的特征:


faster RCNN

主要思想是使用最后一个卷积层来得到候选区域,faster RCNN相当于:候选区域生成网络+fast RCNN。

  1. 特征提取网络,VGG-16等。网络输出5139256维特征
  2. 使用3种面积,3种长宽总共9种候选窗口,称为:anchor,如图:
  3. 训练过程中有四种损失:
    1. 区域生成网络的前后景分类损失(Object or not object)
    2. 区域生成网络的区域位置损失(Bounding box proposal)
    3. Fast RCNN物体分类损失(Normal object classification)
    4. Fast RCNN区域位置损失(Improve previous Bounding box proposal)
  4. 训练方式:
    1. 轮流训练
    2. 近似联合训练
    3. 联合训练

整个结构:

目标检测之RCNN,fast RCNN,faster RCNN的更多相关文章

  1. [转]CNN目标检测(一):Faster RCNN详解

    https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgi ...

  2. 目标检测算法之Fast R-CNN和Faster R-CNN原理

    一.Fast R-CNN原理 在SPPNet中,实际上特征提取和区域分类两个步骤还是分离的.只是使用ROI池化层提取了每个区域的特征,在对这些区域分类时,还是使用传统的SVM作为分类器.Fast R- ...

  3. 目标检测算法(1)目标检测中的问题描述和R-CNN算法

    目标检测(object detection)是计算机视觉中非常具有挑战性的一项工作,一方面它是其他很多后续视觉任务的基础,另一方面目标检测不仅需要预测区域,还要进行分类,因此问题更加复杂.最近的5年使 ...

  4. 谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN

    谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN 朱晓霞发表于目标检测和深度学习订阅 235 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 ...

  5. AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3

    1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...

  6. 第三十节,目标检测算法之Fast R-CNN算法详解

    Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2 ...

  7. (四)目标检测算法之Fast R-CNN

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  8. 【目标检测】用Fast R-CNN训练自己的数据集超详细全过程

    目录: 一.环境准备 二.训练步骤 三.测试过程 四.计算mAP 寒假在家下载了Fast R-CNN的源码进行学习,于是使用自己的数据集对这个算法进行实验,下面介绍训练的全过程. 一.环境准备 我这里 ...

  9. 目标检测算法之Fast R-CNN算法详解

    在介绍Fast R-CNN之前我们先介绍一下SPP Net 一.SPP Net SPP:Spatial Pyramid Pooling(空间金字塔池化) 众所周知,CNN一般都含有卷积部分和全连接部分 ...

  10. 目标检测算法(一):R-CNN详解

    参考博文:https://blog.csdn.net/hjimce/article/details/50187029 R-CNN(Regions with CNN features)--2014年提出 ...

随机推荐

  1. 1090 危险品装箱 (25分)C语言

    集装箱运输货物时,我们必须特别小心,不能把不相容的货物装在一只箱子里.比如氧化剂绝对不能跟易燃液体同箱,否则很容易造成爆炸. 本题给定一张不相容物品的清单,需要你检查每一张集装箱货品清单,判断它们是否 ...

  2. owa部署

    新建一台win server 2012(注意如果是2008要补丁) 配置静态ip DNS指向ad域的ip 测试: ping 下ad域的域名,是通的继续 把本机加入到ad域 重启下 用admin登陆: ...

  3. bootstrap:导航下拉菜单

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...

  4. Map and HashMap

    1.1.1. Map 接口 java提供了一组可以以键值对(key-value)的形式存储数据的数据结构,这种数据结构称为Map.我们可以把Map看成一个多行两列的表格,其中第一列存放key,第二列存 ...

  5. 使用redis的zset实现高效分页查询(附完整代码)

    一.需求 移动端系统里有用户和文章,文章可设置权限对部分用户开放.现要实现的功能是,用户浏览自己能看的最新文章,并可以上滑分页查看. 二.数据库表设计 涉及到的数据库表有:用户表TbUser.文章表T ...

  6. 《工具》centos 7.x 下安装 JDK,超详细总结一看就会

    第一步 检查 JDK 查看JDK版本,在命令行输入:java -version [root@test ~]# java -version bash: java: command not found 如 ...

  7. Java Collection集合中的iterator方法

    Iterator接口的概述 /** * java.util.Iterator接口:选代器(对集合进行遍历) * 有两个常用的方法 * boolean hasNext() * 如果仍有元素可以迭代,则返 ...

  8. LCA - 求任意两点间的距离

    There are n houses in the village and some bidirectional roads connecting them. Every day peole alwa ...

  9. C# html生成图片保存下载

    最近有个需求,需要把内容生成图片,我找到一些资料可以将html页面生成图片并保存下载 下面是简单的实现 1.html页面 @{ Layout = null; } <!DOCTYPE html&g ...

  10. 多级反向代理java获取真实IP地址

    public static String getIpAddress(HttpServletRequest request){ String ip = request.getHeader("x ...