博客引自:https://www.cnblogs.com//DragonFire/p/9220523.html

简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术:

自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思

这就要做 : 语义相似度

接下来我们用Python大法来实现一个简单的自然语言处理

现在又要用到Python强大的三方库了

第一个是将中文字符串进行分词的库叫 jieba

pip install jieba

我们通常把这个库叫做 结巴分词 确实是结巴分词,而且这个词库是 made in china , 基本用一下这个结巴分词:

import jieba

key_word = "你叫什么名字"  # 定义一句话,基于这句话进行分词

cut_word = jieba.cut(key_word)  # 使用结巴分词中的cut方法对"你叫什么名字" 进行分词

print(cut_word)  # <generator object Tokenizer.cut at 0x03676390> 不懂生成器的话,就忽略这里

cut_word_list = list(cut_word)  # 如果不明白生成器的话,这里要记得把生成器对象做成列表

print(cut_word_list)  # ['你', '叫', '什么', '名字']

测试代码就很明显了,它很清晰的把咱们的中文字符串转为列表存储起来了

第二个是一个语言训练库叫 gensim

pip install gensim

这个训练库很厉害, 里面封装很多机器学习的算法, 是目前人工智能的主流应用库,这个不是很好理解, 需要一定的Python数据处理的功底

import jieba
import gensim
from gensim import corpora
from gensim import models
from gensim import similarities l1 = ["你的名字是什么", "你今年几岁了", "你有多高你胸多大", "你胸多大"]
a = "你今年多大了" all_doc_list = []
for doc in l1:
doc_list = [word for word in jieba.cut(doc)]
all_doc_list.append(doc_list) print(all_doc_list)
doc_test_list = [word for word in jieba.cut(a)] # 制作语料库
dictionary = corpora.Dictionary(all_doc_list) # 制作词袋
# 词袋的理解
# 词袋就是将很多很多的词,进行排列形成一个 词(key) 与一个 标志位(value) 的字典
# 例如: {'什么': 0, '你': 1, '名字': 2, '是': 3, '的': 4, '了': 5, '今年': 6, '几岁': 7, '多': 8, '有': 9, '胸多大': 10, '高': 11}
# 至于它是做什么用的,带着问题往下看 print("token2id", dictionary.token2id)
print("dictionary", dictionary, type(dictionary)) corpus = [dictionary.doc2bow(doc) for doc in all_doc_list]
# 语料库:
# 这里是将all_doc_list 中的每一个列表中的词语 与 dictionary 中的Key进行匹配
# 得到一个匹配后的结果,例如['你', '今年', '几岁', '了']
# 就可以得到 [(1, 1), (5, 1), (6, 1), (7, 1)]
# 1代表的的是 你 1代表出现一次, 5代表的是 了 1代表出现了一次, 以此类推 6 = 今年 , 7 = 几岁
print("corpus", corpus, type(corpus)) # 将需要寻找相似度的分词列表 做成 语料库 doc_test_vec
doc_test_vec = dictionary.doc2bow(doc_test_list)
print("doc_test_vec", doc_test_vec, type(doc_test_vec)) # 将corpus语料库(初识语料库) 使用Lsi模型进行训练
lsi = models.LsiModel(corpus)
# 这里的只是需要学习Lsi模型来了解的,这里不做阐述
print("lsi", lsi, type(lsi))
# 语料库corpus的训练结果
print("lsi[corpus]", lsi[corpus])
# 获得语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示
print("lsi[doc_test_vec]", lsi[doc_test_vec]) # 文本相似度
# 稀疏矩阵相似度 将 主 语料库corpus的训练结果 作为初始值
index = similarities.SparseMatrixSimilarity(lsi[corpus], num_features=len(dictionary.keys()))
print("index", index, type(index)) # 将 语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示 与 语料库corpus的 向量表示 做矩阵相似度计算
sim = index[lsi[doc_test_vec]] print("sim", sim, type(sim)) # 对下标和相似度结果进行一个排序,拿出相似度最高的结果
# cc = sorted(enumerate(sim), key=lambda item: item[1],reverse=True)
cc = sorted(enumerate(sim), key=lambda item: -item[1])
print(cc) text = l1[cc[0][0]] print(a,text)

前方高能

jieba gensim 相似度实现的更多相关文章

  1. python 全栈开发,Day133(玩具与玩具之间的对话,基于jieba gensim pypinyin实现的自然语言处理,打包apk)

    先下载github代码,下面的操作,都是基于这个版本来的! https://github.com/987334176/Intelligent_toy/archive/v1.6.zip 注意:由于涉及到 ...

  2. Python人工智能之路 - 第四篇 : jieba gensim 最好别分家之最简单的相似度实现

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...

  3. 3,jieba gensim 最好别分家之最简单的相似度实现

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...

  4. jieba gensim 最好别分家之最简单的相似度实现

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...

  5. jieba gensim 用法

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...

  6. 文本相似度分析(基于jieba和gensim)

    基础概念 本文在进行文本相似度分析过程分为以下几个部分进行, 文本分词 语料库制作 算法训练 结果预测 分析过程主要用两个包来实现jieba,gensim jieba:主要实现分词过程 gensim: ...

  7. 【NLP】Python实例:基于文本相似度对申报项目进行查重设计

    Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起 ...

  8. 2017 年 机器学习之数据挖据、数据分析,可视化,ML,DL,NLP等知识记录和总结

    今天是2017年12月30日,2017年的年尾,2018年马上就要到了,回顾2017过的确实很快,不知不觉就到年末了,再次开篇对2016.2017年的学习数据挖掘,机器学习方面的知识做一个总结,对自己 ...

  9. before_request after_request

    Flask我们已经学习很多基础知识了,现在有一个问题 我们现在有一个 Flask 程序其中有3个路由和视图函数,如下: from flask import Flask app = Flask(__na ...

随机推荐

  1. oracle-DML-2

    1.update 语句 update  table set  [column,column......] where  column ='' 示例: update   customers set   ...

  2. LUOGU 3089 后缀排序(模板)

    传送门 解题思路 这是一个神奇的算法,sa[i]表示排名第i为的元素是啥,rk[i]表示第i个元素排名是啥.然后使用基数排序+倍增的思想去处理.主要是参考的这位大佬的博客(https://www.cn ...

  3. Qt: error lnk1158 无法运行rc.exe

    解决办法:(依据自己的环境而定) 将C:\Program Files (x86)\Windows Kits\\bin\10.0.15063.0\x64 目录下的rc.exe 和rcdll.dll 复制 ...

  4. Watering Grass (贪心,最小覆盖)

    参考: https://blog.csdn.net/shuangde800/article/details/7828675 https://www.cnblogs.com/haoabcd2010/p/ ...

  5. 层次分析法MATLAB

    输入成对比较矩阵,输出权重值和一致性检验结果. disp('请输入判断矩阵A(n阶)'); A=input('A='); [n,n]=size(A); x=ones(n,100); y=ones(n, ...

  6. Android消息机制使用注意事项,防止泄漏

    在Android的线程通信当中,使用频率最多的就是Android的消息处理机制(Handler.send().View.post().Asynctask.excute()等等都使用到了消息处理机制). ...

  7. 互联网安全的必要性:CSDN用户信息泄露案告破

    本报讯 昨天,记者从北京警方获悉,历时40多天的侦查,轰动互联网的“CSDN网站用户信息泄露案”告破,涉案嫌疑人已被刑拘.由于保密措施不力,北京警方还向CSDN网站开出我国落实信息安全等级保护制度以来 ...

  8. optim.py cs231n

    n如果有错误,欢迎指出,不胜感激 import numpy as np """ This file implements various first-order upda ...

  9. PHP学习(数组)

    数组就是一个键值对组成的语言结构,键类似于酒店的房间号,值类似于酒店房间里存储的东西. PHP有两种数组:索引数组.关联数组. 索引和关联两个词都是针对数组的键而言的. 索引数组 先介绍下索引数组,索 ...

  10. Codeforces 439C

    题目链接 比赛时间没能通过==, 只能说明自己代码写的太不严谨咯! 解题思想就是贪心 先判断无解的情况: 1. 奇数不够,因为偶数是无法凑成奇数的 2. 偶数不够,2个奇数可以凑成一个偶数 3. 在奇 ...