jieba gensim 相似度实现
博客引自:https://www.cnblogs.com//DragonFire/p/9220523.html
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术:
自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思
这就要做 : 语义相似度
接下来我们用Python大法来实现一个简单的自然语言处理
现在又要用到Python强大的三方库了
第一个是将中文字符串进行分词的库叫 jieba
pip install jieba
我们通常把这个库叫做 结巴分词 确实是结巴分词,而且这个词库是 made in china , 基本用一下这个结巴分词:

import jieba key_word = "你叫什么名字" # 定义一句话,基于这句话进行分词 cut_word = jieba.cut(key_word) # 使用结巴分词中的cut方法对"你叫什么名字" 进行分词 print(cut_word) # <generator object Tokenizer.cut at 0x03676390> 不懂生成器的话,就忽略这里 cut_word_list = list(cut_word) # 如果不明白生成器的话,这里要记得把生成器对象做成列表 print(cut_word_list) # ['你', '叫', '什么', '名字']

测试代码就很明显了,它很清晰的把咱们的中文字符串转为列表存储起来了
第二个是一个语言训练库叫 gensim
pip install gensim
这个训练库很厉害, 里面封装很多机器学习的算法, 是目前人工智能的主流应用库,这个不是很好理解, 需要一定的Python数据处理的功底
import jieba
import gensim
from gensim import corpora
from gensim import models
from gensim import similarities l1 = ["你的名字是什么", "你今年几岁了", "你有多高你胸多大", "你胸多大"]
a = "你今年多大了" all_doc_list = []
for doc in l1:
doc_list = [word for word in jieba.cut(doc)]
all_doc_list.append(doc_list) print(all_doc_list)
doc_test_list = [word for word in jieba.cut(a)] # 制作语料库
dictionary = corpora.Dictionary(all_doc_list) # 制作词袋
# 词袋的理解
# 词袋就是将很多很多的词,进行排列形成一个 词(key) 与一个 标志位(value) 的字典
# 例如: {'什么': 0, '你': 1, '名字': 2, '是': 3, '的': 4, '了': 5, '今年': 6, '几岁': 7, '多': 8, '有': 9, '胸多大': 10, '高': 11}
# 至于它是做什么用的,带着问题往下看 print("token2id", dictionary.token2id)
print("dictionary", dictionary, type(dictionary)) corpus = [dictionary.doc2bow(doc) for doc in all_doc_list]
# 语料库:
# 这里是将all_doc_list 中的每一个列表中的词语 与 dictionary 中的Key进行匹配
# 得到一个匹配后的结果,例如['你', '今年', '几岁', '了']
# 就可以得到 [(1, 1), (5, 1), (6, 1), (7, 1)]
# 1代表的的是 你 1代表出现一次, 5代表的是 了 1代表出现了一次, 以此类推 6 = 今年 , 7 = 几岁
print("corpus", corpus, type(corpus)) # 将需要寻找相似度的分词列表 做成 语料库 doc_test_vec
doc_test_vec = dictionary.doc2bow(doc_test_list)
print("doc_test_vec", doc_test_vec, type(doc_test_vec)) # 将corpus语料库(初识语料库) 使用Lsi模型进行训练
lsi = models.LsiModel(corpus)
# 这里的只是需要学习Lsi模型来了解的,这里不做阐述
print("lsi", lsi, type(lsi))
# 语料库corpus的训练结果
print("lsi[corpus]", lsi[corpus])
# 获得语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示
print("lsi[doc_test_vec]", lsi[doc_test_vec]) # 文本相似度
# 稀疏矩阵相似度 将 主 语料库corpus的训练结果 作为初始值
index = similarities.SparseMatrixSimilarity(lsi[corpus], num_features=len(dictionary.keys()))
print("index", index, type(index)) # 将 语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示 与 语料库corpus的 向量表示 做矩阵相似度计算
sim = index[lsi[doc_test_vec]] print("sim", sim, type(sim)) # 对下标和相似度结果进行一个排序,拿出相似度最高的结果
# cc = sorted(enumerate(sim), key=lambda item: item[1],reverse=True)
cc = sorted(enumerate(sim), key=lambda item: -item[1])
print(cc) text = l1[cc[0][0]] print(a,text)
前方高能
jieba gensim 相似度实现的更多相关文章
- python 全栈开发,Day133(玩具与玩具之间的对话,基于jieba gensim pypinyin实现的自然语言处理,打包apk)
先下载github代码,下面的操作,都是基于这个版本来的! https://github.com/987334176/Intelligent_toy/archive/v1.6.zip 注意:由于涉及到 ...
- Python人工智能之路 - 第四篇 : jieba gensim 最好别分家之最简单的相似度实现
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...
- 3,jieba gensim 最好别分家之最简单的相似度实现
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...
- jieba gensim 最好别分家之最简单的相似度实现
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...
- jieba gensim 用法
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...
- 文本相似度分析(基于jieba和gensim)
基础概念 本文在进行文本相似度分析过程分为以下几个部分进行, 文本分词 语料库制作 算法训练 结果预测 分析过程主要用两个包来实现jieba,gensim jieba:主要实现分词过程 gensim: ...
- 【NLP】Python实例:基于文本相似度对申报项目进行查重设计
Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起 ...
- 2017 年 机器学习之数据挖据、数据分析,可视化,ML,DL,NLP等知识记录和总结
今天是2017年12月30日,2017年的年尾,2018年马上就要到了,回顾2017过的确实很快,不知不觉就到年末了,再次开篇对2016.2017年的学习数据挖掘,机器学习方面的知识做一个总结,对自己 ...
- before_request after_request
Flask我们已经学习很多基础知识了,现在有一个问题 我们现在有一个 Flask 程序其中有3个路由和视图函数,如下: from flask import Flask app = Flask(__na ...
随机推荐
- spring源码学习之默认标签的解析(二)
这个是接着上一篇来写,主要是这章内容比较多,还是分开来写吧! 一.AbstractBeanDefinition属性介绍 XML中的所有的属性都可以在GenericBeanDefinition中找到对应 ...
- 洛谷 2055 [ZJOI2009]假期的宿舍——二分图匹配
题目:https://www.luogu.org/problemnew/show/P2055 #include<iostream> #include<cstdio> #incl ...
- Faster RCNN算法demo代码解析
一. Faster-RCNN代码解释 先看看代码结构: Data: This directory holds (after you download them): Caffe models pre-t ...
- androidstudio如何用github多人开发
一.首先我们利用github作为代码库,有两种方法可以创建代码库 一定要配置好git环境和创建好github账号 检测git环境配置 检测github账号是否能登录 成功就会 (1)在github中直 ...
- 【JZOJ5093】【GDSOI2017第四轮模拟day3】字符串匹配 哈希
题面 对于一个字符集大小为C的字符串P,我们可以将任意两种字符在P中的位置进行互换,例如P=abcba,我们交换a,b就变为bacab,交换a,d就变为dbcbd,交换可以进行任意次.若交换后P变为了 ...
- 逐行粒度的vuex源码分析
vuex源码分析 了解vuex 什么是vuex vuex是一个为vue进行统一状态管理的状态管理器,主要分为state, getters, mutations, actions几个部分,vue组件基于 ...
- 【水滴石穿】react-native-aze
说个题外话,早上打开电脑的时候,电脑变成彩色的了,锅是我曾经安装的一个chrome扩展,没有经过我的同意开启了 (也许是昨天迷迷糊糊开启了) 上午运行项目都不成功,还以为被黑客攻击了---然后下午就排 ...
- 【codeforces Manthan, Codefest 17 C】Helga Hufflepuff's Cup
[链接]h在这里写链接 [题意] k是最高级别的分数,最高界别的分数最多只能有x个. 1<=k<=m; 和k相邻的点的分数只能小于k; n个点的树,问你每个 ...
- Mac上代码开启dump的core文件生成方案
#ifdef Q_OS_MAC struct rlimit rl; getrlimit(RLIMIT_NOFILE,&rl); rl.rlim_cur = qMin((rlim_t)OPEN_ ...
- 【转载】【技巧总结】PyCharm怎么克隆github上开源的项目
PyCharm怎么clone github上开源的项目 一.先要确保PyCharm正确的配置了Git 如果你已经在PyCharm中配置好了Git,可以跳过此步骤,直接看下一步. 那么怎么在Py ...