20191211 HNOI2017模拟赛 C题
题目:


分析:
开始觉得是神仙题。。。
然后发现n最多有2个质因子
这说明sm呢。。。
学过物理的小朋友们知道,当一个物体受多个不同方向相同的力时,只有相邻力的夹角相等,受力就会平衡
于是拆扇叶相当于在风扇上等分角度
考虑贪心的话,就是一次拆越少,也就是角度分越大越好
那就要用到质因子了
先将编号改为(0~n-1)
首先一个质因子p的情况很好处理,当一个扇叶x掉下时,必须拆下y(其中y mod n/p = x mod n/p)的扇叶
于是直接打标记就好了
然后就是2个质因子的情况
那么一个风扇叶如果要下来,那么它所对应的拆卸方式就有两种
而且这两种只能选一种
同类质因数的情况还不会影响。。。
令掉下来的点所对应的两种方案连边
然后会形成一个二分图
每一种方案对应一个代价
然后代价最少。。。
唔。。。
最小割了
写一会调一会中途还差点认为自己想错了
搞了好久。。
代码实现能力太差了。。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm> #define maxn 40005
#define maxm 300005
#define INF 0x3f3f3f3f using namespace std; inline int getint()
{
int num=,flag=;char c;
while((c=getchar())<''||c>'')if(c=='-')flag=-;
while(c>=''&&c<='')num=num*+c-,c=getchar();
return num*flag;
} int n,K,S,T;
int fir[maxn],nxt[maxm],to[maxm],cap[maxm],cnt;
int h[maxn],tp[maxn];
int pri[maxn],np[maxn],cur;
int A,B;
int num[maxn],ans[maxn],vis[maxn],pos[maxn]; inline void newnode(int u,int v,int w)
{to[++cnt]=v,nxt[cnt]=fir[u],fir[u]=cnt,cap[cnt]=w;}
inline void insert(int u,int v,int w)
{newnode(u,v,w),newnode(v,u,);} inline bool bfs()
{
memset(h,-,sizeof h);
queue<int>Q;h[S]=,Q.push(S);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=fir[u];i;i=nxt[i])
if(cap[i]&&!~h[to[i]])
{
h[to[i]]=h[u]+,Q.push(to[i]);
if(to[i]==T)return ;
}
}
return ;
} inline int aug(int u,int flow)
{
if(u==T)return flow;
int used=;
for(int i=tp[u];i;i=nxt[i])
{
tp[u]=i;
if(cap[i]&&h[to[i]]==h[u]+)
{
int w=flow-used;
w=aug(to[i],min(cap[i],w));
cap[i]-=w,cap[i^]+=w,used+=w;
if(used==flow)return flow;
}
}
if(!used)h[u]=-;
return used;
} inline int dinic()
{
int num=;
while(bfs())memcpy(tp,fir,sizeof fir),num+=aug(S,INF);
return num;
} inline void init()
{
np[]=;
for(int i=;i<=n;i++)
{
if(!np[i])pri[++cur]=i;
for(int j=;j<=cur&&i*pri[j]<=n;j++)
{
np[i*pri[j]]=;
if(i%pri[j]==)break;
}
}
} inline void dfs(int u)
{
vis[u]=;
for(int i=fir[u];i;i=nxt[i])if(cap[i]&&!vis[to[i]])dfs(to[i]);
} int main()
{
n=getint(),K=getint();
init();
for(A=;A<=cur;A++)if(n%pri[A]==)break;
for(B=A+;B<=cur;B++)if(n%pri[B]==)break;
if(n==){printf("-1\n");return ;}
if(B>cur)
{
A=n/pri[A];
for(int i=;i<=K;i++)
{
int x=getint();ans[x]=;
if(!vis[x])for(int j=(x-)%A+;j<=n;j+=A)vis[j]=;
}
int num=;
for(int i=;i<=n;i++)num+=vis[i];
if(num==n){printf("-1\n");return ;}
printf("%d\n",num-K);
for(int i=,flag=;i<=n;i++)
if(vis[i]&&!ans[i])
{
printf("%d",i);
if((++flag)==num-K)printf("\n");
else printf(" ");
}
}
else
{
A=n/pri[A],B=n/pri[B];
S=A+B+,T=S+,cnt=;
for(int i=;i<=A;i++)num[i]=n/A;
for(int i=;i<=B;i++)num[A+i]=n/B;
for(int i=;i<=K;i++)
{
int x=getint();ans[x]=;
int tmp1=(x-)%A+,tmp2=(x-)%B+A+;
pos[tmp1]=pos[tmp2]=;
num[tmp1]--,num[tmp2]--;
}
for(int i=;i<=n;i++)
{
int tmp1=(i-)%A+,tmp2=(i-)%B+A+;
if(pos[tmp1]&&pos[tmp2])insert(tmp1,tmp2,INF);
}
for(int i=;i<=A;i++)if(pos[i])insert(S,i,num[i]);
for(int i=A+;i<=A+B;i++)if(pos[i])insert(i,T,num[i]);
int sum=dinic();
if(sum==n-K){printf("-1\n");return ;}
printf("%d\n",sum);
dfs(S);
for(int i=;i<=A;i++)if(pos[i]&&!vis[i])for(int j=i;j<=n;j+=A)ans[j]^=;
for(int i=;i<=B;i++)if(pos[i+A]&&vis[i+A])for(int j=i;j<=n;j+=B)ans[j]^=;
for(int i=,flag=;i<=n;i++)
if(ans[i])
{
printf("%d",i);
if((++flag)==sum){printf("\n");break;}
else printf(" ");
}
}
}

20191211 HNOI2017模拟赛 C题的更多相关文章
- 20191211 HNOI2017 模拟赛 问题A
题目: 分析: 好难好难... 下来听神仙讲.. 每一个长度为n-2的prufer序列一一对应一棵大小为n的树... 每个点在序列中的出现次数为该点的度数减一 哦??? ... 哦... prufer ...
- 6.28 NOI模拟赛 好题 状压dp 随机化
算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...
- newcoder NOIP提高组模拟赛C题——保护
我是发了疯才来写这道题的 我如果用写这道题的时间去写dp,我估计我能写上三四道 可怕的数据结构题 题目 这道题的鬼畜之处在于实在是不太好写 我们看到要求离树根尽量的近,所以我们很容易就能想到树上倍增, ...
- noip模拟赛 水题
题目描述 LYK出了道水题. 这个水题是这样的:有两副牌,每副牌都有n张. 对于第一副牌的每张牌长和宽分别是xi和yi.对于第二副牌的每张牌长和宽分别是aj和bj.第一副牌的第i张牌能覆盖第二副牌的第 ...
- 2016 10 26考试 NOIP模拟赛 杂题
Time 7:50 AM -> 11:15 AM 感觉今天考完后,我的内心是崩溃的 试题 考试包 T1: 首先看起来是个贪心,然而,然而,看到那个100%数据为n <= 2000整个人就虚 ...
- 6.29 省选模拟赛 坏题 AC自动机 dp 图论
考场上随手构造了一组数据把自己卡掉了 然后一直都是掉线状态了. 最后发现这个东西不是subtask -1的情况不多 所以就没管无解直接莽 写题有点晚 故没调出来.. 考虑怎么做 容易想到建立AC自动机 ...
- 某模拟赛C题 树上路径统计 (点分治)
题意 给定一棵有n个节点的无根树,树上的每个点有一个非负整数点权.定义一条路径的价值为路径上的点权和-路径上的点权最大值. 给定参数P,我!=们想知道,有多少不同的树上简单路径,满足它的价值恰好是P的 ...
- Newnode's NOI(P?)模拟赛 第二题 dp决策单调优化
其实直接暴力O(n3)DP+O2O(n^3)DP+O_2O(n3)DP+O2优化能过- CODE O(n3)O(n^3)O(n3) 先来个O(n3)O(n^3)O(n3)暴力DP(开了O2O_2O2 ...
- 10.17(山东多校联合模拟赛 day1)
山东多校联合模拟赛 day1 题不难 rect [问题描述] 给出圆周上的 N 个点, 请你计算出以这些点中的任意四个为四个角,能构成多少个矩形. 点的坐标是这样描述的, 给定一个数组 v[1..N] ...
随机推荐
- 与正则有关的JS方法结合其在项目中的应用
与正则有关的JS方法结合其在项目中的应用 前言 最近项目中用到正则匹配比较多,因此打算深入理解和总结下各个与正则有关的方法,再结合在项目中使用的情况.与正则有关的JS方法共有7个,分别是RegExp对 ...
- js实现bind
Function.prototype.bind=function(ctx,...lastArgs){ let self=this return (...laterArgs)=>self.appl ...
- java反射小实例
利用反射实现 对配置文件的更改达到更改方法的目的 文件夹目录 首先Student类中有个sleep方法 pro.properties定义了参数 最后是RelectTestMain. package c ...
- C++ 图片格式转化和压缩
在做人脸识别底库图片导入的时候,需要支持主流的图片的格式,如jpeg.bmp.png等格式.所以需要对图片进行格式转化.图片过大的话,还有进行缩放等.本文介绍的是利用cximage开源库,来进行对图片 ...
- POJ2763 Housewife Wind 树链剖分 边权
POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...
- Math类入门学习
Math类 Math类包含用于执行基本的数字运算等基本指数.对数.平方根法.三角函数. import java.lang.*; public class TestMath { public stati ...
- Deep Learning ——Yann LeCun,Yoshua Bengio&Geoffrey Hinton
引言: 深度学习的本质是用多层的神经网络找到一个可以被学习的复杂的函数实现语音识别,图像识别等功能. 多层神经网络的结构: 多层神经元的组成,每一层的输入都等于上一层的输出. 应用领域:cv,nlp ...
- 16.MindManager整理交互思路
点住主题同时按ins键可以插入一个支节点 右键主题选择下方的排列图表 可以选择排列方式 按住主题同时ctr+v就会粘帖成一个子主题 文本也可以复制黏贴 主题内容可以直接选择拖动更改结构 选择主题框上的 ...
- 0005 表格table
第01阶段.前端基础.表格 表格 table 目标: 理解: 能说出表格用来做什么的 表格的基本结构组成 应用: 能够熟练写出n行n列的表格 能简单的合并单元格 表格作用: 存在即是合理的. 表格 ...
- SofaBoot使用Nacos进行服务注册发现
前提 最近创业公司的项目组基于业务需要,开发一套新的微服务,考虑到选用的组件必须是主流.社区活跃.生态完善以及方便迁移到云上等因素,引入了SOFAStack全家桶.微服务开发里面,一个很重要的功能就是 ...