You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
That is, given an array a[1...n] of different integer
numbers, your program must answer a series of questions Q(i, j, k) in
the form: "What would be the k-th number in a[i...j] segment, if this
segment was sorted?"

For example, consider the array a = (1, 5, 2, 6, 3, 7, 4).
Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If
we sort this segment, we get (2, 3, 5, 6), the third number is 5, and
therefore the answer to the question is 5.

Input

The first line of the input file contains n --- the size of the
array, and m --- the number of questions to answer (1 <= n <= 100
000, 1 <= m <= 5 000).

The second line contains n different integer numbers not exceeding 10
9 by their absolute values --- the array for which the answers should be given.

The following m lines contain question descriptions, each
description consists of three numbers: i, j, and k (1 <= i <= j
<= n, 1 <= k <= j - i + 1) and represents the question Q(i, j,
k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

Hint

This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.
 
题意 : 给你一维的一串数,询问区间第 K 大, 主席树板子题
#define ll long long
const int maxn = 1e5+5;
const int mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f; int n, m;
int pre[maxn];
int rank[maxn];
int cnt, ss;
int root[maxn];
struct node
{
int l, r;
int sum;
}t[maxn*20]; void init(){
cnt = 1;
root[0] = 0;
t[0].l = t[0].r = t[0].sum = 0;
} void update(int num, int &rt, int l, int r){
t[cnt++] = t[rt];
rt = cnt-1;
t[rt].sum++;
if (l == r) return;
int m = (l+r)>>1;
if (num <= m) update(num, t[rt].l, l, m);
else update(num, t[rt].r, m+1, r);
} int query(int i, int j, int k, int l, int r){
int d = t[t[j].l].sum - t[t[i].l].sum;
int m = (l+r)>>1; if (l == r) return l;
if (k <= d) return query(t[i].l, t[j].l, k, l, m);
else return query(t[i].r, t[j].r, k-d, m+1, r);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> m;
for(int i = 1; i <= n; i++){
scanf("%d", &pre[i]);
rank[i] = pre[i];
}
sort(rank+1, rank+1+n);
ss = unique(rank+1, rank+1+n)-rank;
//printf("-- %d\n", cnt);
init();
for(int i = 1; i <= n; i++){
int x = lower_bound(rank+1, rank+ss, pre[i])-rank;
root[i] = root[i-1];
update(x, root[i], 1, n);
}
int a, b, c;
for(int i = 1; i <= m; i++){
scanf("%d%d%d", &a, &b, &c);
int ans = query(root[a-1], root[b], c, 1, n);
printf("%d\n", rank[ans]);
}
return 0;
}

主席树 - 查询某区间第 K 大的更多相关文章

  1. 可持久化线段树(主席树)——静态区间第k大

    主席树基本操作:静态区间第k大 #include<bits/stdc++.h> using namespace std; typedef long long LL; ,MAXN=2e5+, ...

  2. 主席树(静态区间第k大)

    前言 如果要求一些数中的第k大值,怎么做? 可以先就这些数离散化,用线段树记录每个数字出现了多少次. ... 那么考虑用类似的方法来求静态区间第k大. 原理 假设现在要有一些数 我们可以对于每个数都建 ...

  3. 主席树入门——询问区间第k大pos2104,询问区间<=k的元素个数hdu4417

    poj2104找了个板子..,但是各种IO还可以进行优化 /* 找区间[l,r]第k大的数 */ #include<iostream> #include<cstring> #i ...

  4. 主席树——求静态区间第k大

    例题:poj2104 http://poj.org/problem?id=2104 讲解:http://blog.sina.com.cn/s/blog_6022c4720102w03t.html ht ...

  5. POJ 2104 【主席树】【区间第K大】

    #include<stdio.h> #include<algorithm> #include<string.h> #define MAXN 100010 #defi ...

  6. Permutation UVA - 11525(值域树状数组,树状数组区间第k大(离线),log方,log)(值域线段树第k大)

    Permutation UVA - 11525 看康托展开 题目给出的式子(n=s[1]*(k-1)!+s[2]*(k-2)!+...+s[k]*0!)非常像逆康托展开(将n个数的所有排列按字典序排序 ...

  7. ZOJ 2112 Dynamic Rankings(树状数组套主席树 可修改区间第k小)题解

    题意:求区间第k小,节点可修改 思路:如果直接用静态第k小去做,显然我更改一个节点后,后面的树都要改,这个复杂度太高.那么我们想到树状数组思路,树状数组是求前缀和,那么我们可以用树状数组套主席树,求出 ...

  8. 主席树铺垫——总区间第k小

    题目描述(口糊) 先给定一个长度为n的数列,然后给m次操作,每次输入b,求第b小的数. 样例输入 5 7 4 10 9 23 5 1 2 3 4 5 样例输出 4 7 9 10 23 数据范围及温馨提 ...

  9. 【转载】【树状数组区间第K大/小】

    原帖:http://www.cnblogs.com/zgmf_x20a/archive/2008/11/15/1334109.html 回顾树状数组的定义,注意到有如下两条性质: 一,c[ans]=s ...

随机推荐

  1. Codeforces Round #194 (Div.1 + Div. 2)

    A. Candy Bags 总糖果数\(\frac{n^2(n^2+1)}{2}\),所以每人的数量为\(\frac{n}{2}(n^2+1)\) \(n\)是偶数. B. Eight Point S ...

  2. H3C DR和BDR选举

  3. spring security自定义指南

    序 本文主要研究一下几种自定义spring security的方式 主要方式 自定义UserDetailsService 自定义passwordEncoder 自定义filter 自定义Authent ...

  4. 分布式全局唯一ID

    方案一.UUID UUID的方式能生成一串唯一随机32位长度数据,它是无序的一串数据,按照开放软件基金会(OSF)制定的标准计算,UUID的生成用到了以太网卡地址.纳秒级时间.芯片ID码和许多可能的数 ...

  5. Argus--[优先队列]

    Description A data stream is a real-time, continuous, ordered sequence of items. Some examples inclu ...

  6. POJ 1797 Heavy Transportation(Dijkstra运用)

    Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can no ...

  7. 适配器模式 iOS

    前言: 最近需求作一个公共空间的需求,最后决定用适配器模式来做. 首先,需求是什么? 在我们app中,会有很多列表,tableviewcell的样式会比较统一(当然,我之前在公司那个app不算很大,基 ...

  8. CPP STL学习笔记

    STL的概念 源地址  https://www.ev0l.art/index.php/archives/15/ <li> Iterator (迭代器)<li> Containe ...

  9. 嗨,让我带你逐行剖析Vue.js源码

    本项目受到了阮一峰老师的肯定,已刊登在阮一峰老师微信公众号的科技爱好者周刊第87期,同时也被多个微博大V转发,短短一个月时间内在github上star数量就已经突破2k! Hello,大家好,我最近在 ...

  10. socket粘包问题及解决方案

    一.粘包问题 问题1: 无法确认对方发送过来数据的大小. 'client.py' import socket client = socket.socket() client.connect( ('12 ...