主席树 - 查询某区间第 K 大
That is, given an array a[1...n] of different integer
numbers, your program must answer a series of questions Q(i, j, k) in
the form: "What would be the k-th number in a[i...j] segment, if this
segment was sorted?"
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4).
Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If
we sort this segment, we get (2, 3, 5, 6), the third number is 5, and
therefore the answer to the question is 5.
Input
array, and m --- the number of questions to answer (1 <= n <= 100
000, 1 <= m <= 5 000).
The second line contains n different integer numbers not exceeding 10
9 by their absolute values --- the array for which the answers should be given.
The following m lines contain question descriptions, each
description consists of three numbers: i, j, and k (1 <= i <= j
<= n, 1 <= k <= j - i + 1) and represents the question Q(i, j,
k).
Output
Sample Input
7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3
Sample Output
5
6
3
Hint
#define ll long long
const int maxn = 1e5+5;
const int mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f; int n, m;
int pre[maxn];
int rank[maxn];
int cnt, ss;
int root[maxn];
struct node
{
int l, r;
int sum;
}t[maxn*20]; void init(){
cnt = 1;
root[0] = 0;
t[0].l = t[0].r = t[0].sum = 0;
} void update(int num, int &rt, int l, int r){
t[cnt++] = t[rt];
rt = cnt-1;
t[rt].sum++;
if (l == r) return;
int m = (l+r)>>1;
if (num <= m) update(num, t[rt].l, l, m);
else update(num, t[rt].r, m+1, r);
} int query(int i, int j, int k, int l, int r){
int d = t[t[j].l].sum - t[t[i].l].sum;
int m = (l+r)>>1; if (l == r) return l;
if (k <= d) return query(t[i].l, t[j].l, k, l, m);
else return query(t[i].r, t[j].r, k-d, m+1, r);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> m;
for(int i = 1; i <= n; i++){
scanf("%d", &pre[i]);
rank[i] = pre[i];
}
sort(rank+1, rank+1+n);
ss = unique(rank+1, rank+1+n)-rank;
//printf("-- %d\n", cnt);
init();
for(int i = 1; i <= n; i++){
int x = lower_bound(rank+1, rank+ss, pre[i])-rank;
root[i] = root[i-1];
update(x, root[i], 1, n);
}
int a, b, c;
for(int i = 1; i <= m; i++){
scanf("%d%d%d", &a, &b, &c);
int ans = query(root[a-1], root[b], c, 1, n);
printf("%d\n", rank[ans]);
}
return 0;
}
主席树 - 查询某区间第 K 大的更多相关文章
- 可持久化线段树(主席树)——静态区间第k大
主席树基本操作:静态区间第k大 #include<bits/stdc++.h> using namespace std; typedef long long LL; ,MAXN=2e5+, ...
- 主席树(静态区间第k大)
前言 如果要求一些数中的第k大值,怎么做? 可以先就这些数离散化,用线段树记录每个数字出现了多少次. ... 那么考虑用类似的方法来求静态区间第k大. 原理 假设现在要有一些数 我们可以对于每个数都建 ...
- 主席树入门——询问区间第k大pos2104,询问区间<=k的元素个数hdu4417
poj2104找了个板子..,但是各种IO还可以进行优化 /* 找区间[l,r]第k大的数 */ #include<iostream> #include<cstring> #i ...
- 主席树——求静态区间第k大
例题:poj2104 http://poj.org/problem?id=2104 讲解:http://blog.sina.com.cn/s/blog_6022c4720102w03t.html ht ...
- POJ 2104 【主席树】【区间第K大】
#include<stdio.h> #include<algorithm> #include<string.h> #define MAXN 100010 #defi ...
- Permutation UVA - 11525(值域树状数组,树状数组区间第k大(离线),log方,log)(值域线段树第k大)
Permutation UVA - 11525 看康托展开 题目给出的式子(n=s[1]*(k-1)!+s[2]*(k-2)!+...+s[k]*0!)非常像逆康托展开(将n个数的所有排列按字典序排序 ...
- ZOJ 2112 Dynamic Rankings(树状数组套主席树 可修改区间第k小)题解
题意:求区间第k小,节点可修改 思路:如果直接用静态第k小去做,显然我更改一个节点后,后面的树都要改,这个复杂度太高.那么我们想到树状数组思路,树状数组是求前缀和,那么我们可以用树状数组套主席树,求出 ...
- 主席树铺垫——总区间第k小
题目描述(口糊) 先给定一个长度为n的数列,然后给m次操作,每次输入b,求第b小的数. 样例输入 5 7 4 10 9 23 5 1 2 3 4 5 样例输出 4 7 9 10 23 数据范围及温馨提 ...
- 【转载】【树状数组区间第K大/小】
原帖:http://www.cnblogs.com/zgmf_x20a/archive/2008/11/15/1334109.html 回顾树状数组的定义,注意到有如下两条性质: 一,c[ans]=s ...
随机推荐
- Can you find it?——[二分查找]
Description Give you three sequences of numbers A, B, C, then we give you a number X. Now you need t ...
- H3C IPv6地址分类
- 开源项目使用 appveyor 自动构建
我写了几个开源项目,我想要有小伙伴提交的时候自动运行单元测试,自动运行编译,这样可以保证小伙伴提交清真的代码 本文将会告诉大家如何接入 appveyor 自动构建方案,在 Github 上给自己的开源 ...
- tf.reduce_sum()
#axis 表示在哪个维度进行sum操作,不写代表所有维 #keep_dims 是否保留原始数据维度 reduce_sum( input_tensor, axis=None, keep_dims=Fa ...
- Teleport ultra/IDM(Internet Download Manager)
神器扒网站——teleport ultra IDM(Internet Download Manager) 在平时的开发或者学习的过程中,我们难免会看到一些让人心动的网站,于是自己想把它搞下来,自己手工 ...
- 记springboot + MP +Hikari动态数据源配置
环境准备: springboot 2.1.6 mybatis-plus 数据库驱动 boot 自带hikari驱动 步骤1: 导入多数据源启动工具类 <!-- 多数据源支持 -->< ...
- python利用subprocess执行交互命令
已经知道,os.system可以方便的利用python代码执行一些像ping.ipconfig之类的系统命令,但却只能得到命令执行是否成功,不能获得命令成功执行后的结果,像下面这样: >> ...
- Go处理PDF
工作中经常会遇到一些pdf文件处理的问题,一千种pdf有一千种处理方式,每次都是绞尽脑汁和这些pdf战斗到底. 本人又是一个gopher,所以这篇文章会以一个goper的视角,列举一下我所经历过的每一 ...
- maven parent 与 import 的区别
在 maven 配置文件 pom.xml 中可以 引入 <parent>,方式如下(举例是 spring-boot-starter-parent 中的继承关系) <parent& ...
- 【题解】JXOI2018游戏(组合数)
[题解]JXOI2018游戏(组合数) 题目大意 对于\([l,r]\)中的数,你有一种操作,就是删除一个数及其所有倍数.问你删除所有数的所有方案的步数之和. 由于这里是简化题意,有一个东西没有提到: ...