P1002 过河卒

题目描述

棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A点(0, 0)、B点(n, m)(n, m为不超过20的整数),同样马的位置坐标是需要给出的。

现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入输出格式

输入格式:

一行四个数据,分别表示B点坐标和马的坐标。

输出格式:

一个数据,表示所有的路径条数。

输入输出样例

输入样例#1:

6 6 3 3
输出样例#1:

6

说明

结果可能很大!

很久以前做过的一个题,那时候60分,现在才知道因为没开longlong。。

比(非)较(常)水就不多说了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#define swap(a,b) ((a)^=(b)^=(a)^=(b))
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) > (b) ? (b) : (a))
int read()
{
int x = 0;char ch = getchar();char c = ch;
while(ch > '9' || ch < '0')c = ch,ch = getchar();
while(ch >= '0' && ch <= '9')x = x * 10 + ch - '0',ch = getchar();
if(c == '-')return -x;
return x;
}
const int MOD = 1000007;
const int INF = 0x3f3f3f3f;
const int MAXN = 100 + 10;
const int MAXM = 100 + 10; int dir[8][2] = {{1,2},{-1,2},{1,-2},{-1,-2},{2,1},{-2,1},{2,-1},{-2,-1}}; long long dp[1000][1000];
bool b[1000][1000];
int tmp1;int tmp2;
int x,y; int main()
{
tmp1 = read();tmp2 = read();
x = read();y = read();
for(int i = 0;i < 8;i ++)
{
if(x + dir[i][0] >= 0 && y + dir[i][1] >= 0)
b[x + dir[i][0]][y + dir[i][1]] = true;
}
b[x][y] = true;
if(!b[0][1])
dp[0][1] = 1;
if(!b[1][0])
dp[1][0] = 1;
for(int i = 0;i <= tmp1;i ++)
{
for(int j = 0;j <= tmp2;j ++)
{
if(b[i][j])
{
dp[i][j] = 0;
continue;
}
if(j >= 1)
dp[i][j] += dp[i][j - 1];
if(i >= 1)
dp[i][j] += dp[i - 1][j];
}
}
printf("%lld", dp[tmp1][tmp2]);
return 0;
}

洛谷P1002 过河卒 [2017年4月计划 动态规划15]的更多相关文章

  1. 洛谷P1855 榨取kkksc03 [2017年4月计划 动态规划 09]

    P1855 榨取kkksc03 题目描述 洛谷的运营组决定,如果一名oier向他的教练推荐洛谷,并能够成功的使用(成功使用的定义是:该团队有20个或以上的成员,上传10道以上的私有题目,布置过一次作业 ...

  2. 洛谷P2426 删数 [2017年4月计划 动态规划12]

    P2426 删数 题目描述 有N个不同的正整数数x1, x2, ... xN 排成一排,我们可以从左边或右边去掉连续的i(1≤i≤n)个数(只能从两边删除数),剩下N-i个数,再把剩下的数按以上操作处 ...

  3. 洛谷P1968 美元汇率[2017年4月计划 动态规划02]

    P1968 美元汇率 题目背景 此处省略maxint+1个数 题目描述 在以后的若干天里戴维将学习美元与德国马克的汇率.编写程序帮助戴维何时应买或卖马克或美元,使他从100美元开始,最后能获得最高可能 ...

  4. 洛谷 P1002过河卒

    洛谷 P1002过河卒 题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点 ...

  5. 洛谷P1002——过河卒

    又是洛谷题,要不是有小姐姐不会,我才不想动脑子.先贴一下题目地址https://www.luogu.org/problem/P1002 再贴一下题目: 我们读一下题目,这可不比学校的**算法题,读完一 ...

  6. 洛谷 P1002 过河卒 【棋盘dp】

    题目链接:https://www.luogu.org/problemnew/show/P1002 题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点 ...

  7. 洛谷[P1002]过河卒

    原题地址:https://www.luogu.org/problemnew/show/P1002 题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点 ...

  8. 洛谷P1002 过河卒 题解 动态规划

    题目链接:https://www.luogu.com.cn/problem/P1002 题目大意 棋盘上\(A\)点有一个过河卒,需要走到目标\(B\)点.卒行走的规则:可以向下.或者向右.同时在棋盘 ...

  9. 洛谷P1002 过河卒

    关于蒟蒻的我,刚刚接触DP....   那么就来做一道简单DP吧.... 首先先看题: 题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一 ...

随机推荐

  1. egret 篇——关于ios环境下微信浏览器的音频自动播放问题

    前段时间公司突然想用egret(白鹭引擎)做一个金币游戏,大半个月边看文档边写吭哧吭哧也总算是弄完了.期间遇到一个问题,那就是ios环境下微信浏览器的音频自动播放问题. 个人感觉吧,egret自己封装 ...

  2. memcache课程---4、php+memcache如何让用户跨域登录

    memcache课程---4.php+memcache如何让用户跨域登录 一.总结 一句话总结: 让所有服务器共用一台memcache缓存,即可达到跨域的目的 1.session跨域:修改php配置文 ...

  3. SPSS分析技术:多元方差分析

    SPSS分析技术:多元方差分析 下面要介绍多元方差分析的内容,多元方差分析是研究多个自变量与多个因变量相互关系的一种统计理论方法,又称多变量分析.多元方差分析实质上是单因变量方差分析(包括单因素和多因 ...

  4. Mui本地打包笔记(一)使用AndroidStudio运行项目 转载 https://blog.csdn.net/baidu_32377671/article/details/79632411

    转载 https://blog.csdn.net/baidu_32377671/article/details/79632411 使用AndroidStudio运行HBuilder本地打包的Mui项目 ...

  5. matlab调用keras深度学习模型(环境搭建)

    matlab没有直接调用tensorflow模型的接口,但是有调用keras模型的接口,而keras又是tensorflow的高级封装版本,所以就研究一下这个……可以将model-based方法和le ...

  6. 2019-5-21-C#-命令行如何静默调用-del-删除文件

    title author date CreateTime categories C# 命令行如何静默调用 del 删除文件 lindexi 2019-05-21 11:32:28 +0800 2019 ...

  7. windows 遍历目录下的所有文件 FindFirstFile FindNextFile

    Windows下遍历文件时用到的就是FindFirstFile 和FindNextFile 首先看一下定义: HANDLE FindFirstFile( LPCTSTR lpFileName, // ...

  8. Django项目:CRM(客户关系管理系统)--62--52PerfectCRM实现CRM客户报名流程学生合同审核

    # sales_urls.py # ————————47PerfectCRM实现CRM客户报名流程———————— from django.conf.urls import url from bpm. ...

  9. docker 整理

    管理 docker批量删除容器.镜像   1.删除所有容器 docker rm `docker ps -a -q` 1.1 按条件删除容器 删除包含某个字段 ,镜像名或容器名均可, 例如删除 zhy* ...

  10. springmvc 串口读写 基于win7使用txrx netbeans jdk1.8 maven的

    引入 <dependency> <groupId>org.rxtx</groupId> <artifactId>rxtx</artifactId& ...