Python3数据分析与挖掘建模实战✍✍✍
Python3数据分析与挖掘建模实战
Python数据分析简介
Python入门
运行:cmd下"python hello.py"
基本命令:
第三方库
安装
Windows中
pip install numpy
或者下载源代码安装
python setup.py install
Pandas默认安装不能读写Excel文件,需要安装xlrd和xlwt库才能支持excel的读写
pip install xlrd
pip install xlwt
StatModel可pip可exe安装,注意,此库依赖于Pandas和patsy
Scikit-Learn是机器学习相关的库,但是不包含人工神经网络
model.fit() #训练模型,监督模型fit(X,y),非监督模型fit(X)
# 监督模型接口
model.predict(X_new) #预测新样本
model.predict_proba(X_new) #预测概率
model.score() #得分越高,fit越好
# 非监督模型接口
model.transform() #从数据中学到新的“基空间”
model.fit_transform() #从数据中学到新的基,并按照这组基进行转换
Keras是基于Theano的强化的深度学习库,可用于搭建普通神经网络,各种深度学习模型,如自编码器,循环神经网络,递归神经网络,卷积神经网络。Theano也是一个Python库,能高效实现符号分解,速度快,稳定性好,实现了GPU加速,在密集型数据处理上是CPU的10倍,缺点是门槛太高。Keras的速度在Windows会大打折扣。
Windows下:安装MinGWindows--安装Theano---安装Keras--安装配置CUDA
Gensim用来处理语言方面的任务,如文本相似度计算、LDA、Word2Vec等,建议在Windows下运行。
Linux中
sudo apt-get install python-numpy
sudo apt-get install python-scipy
sudo apt-get install python-matplotlib
使用
Matplotlib默认字体是英文,如果要使用中文标签,
plt.rcParams['font.sans-serif'] = ['SimHei']
保存作图图像时,负号显示不正常:
plt.rcParams['axes.unicode_minus'] = False
数据探索
脏数据:缺失值、异常值、不一致的值、重复数据
异常值分析
- 简单统计量分析:超出合理范围的值
- 3sigma原则:若正态分布,异常值定义为偏差超出平均值的三倍标准差;否则,可用远离平均值的多少倍来描述。
- 箱型图分析:异常值定义为小于Q_L-1.5IQR或者大于Q_U +1.5IQR。Q_L是下四分位数,全部数据有四分之一比他小。Q_U是上四分位数。IQR称为四分位数间距,IQR=Q_U-Q_L
分布分析
定量数据的分布分析:求极差(max-min),决定组距和组数,决定分点,列出频率分布表,绘制频率分布直方图。
定性数据的分布分析:饼图或条形图
对比分析
统计量分析
集中趋势度量:均值、中位数、众数
离中趋势度量:极差、标准差、变异系数、四份位数间距
变异系数为:s表示标准差,x表示均值
周期性分析
贡献度分析
又称帕累托分析,原理是帕累托法则,即20/80定律,同样的投入放在不同的地方会产生不同的收益。
相关性分析
途径:绘制散点图、散点图矩阵、计算相关系数
Pearson相关系数:要求连续变量的取值服从正态分布。
$$
\begin{cases}
{|r|\leq 0.3}&\text{不存在线性相关}\
0.3 < |r| \leq 0.5&\text{低度线性相关}\
0.5 < |r| \leq 0.8&\text{显著线性相关}\
0.8 < |r| \leq 1&\text{高度线性相关}\
\end{cases}
$$
相关系数r的取值范围[-1, 1]
Spearman相关系数:不服从正态分布的变量、分类或等级变量之间的关联性可用该系数,也称等级相关系数。
对两个变量分别按照从小到大的顺序排序,得到的顺序就是秩。R_i表示x_i的秩次,Q_i表示y_i的秩次。
判定系数:相关系数的平方,用来解释回归方程对y的解释程度。
数据探索函数
电子商务网站用户行为分析及服务推荐
数据抽取:建立数据库--导入数据--搭建Python数据库操作环境
数据分析
- 网页类型分析
- 点击次数分析
- 网页排名
数据预处理
- 数据清洗:删除数据(中间页面网址、发布成功网址、登录助手页面)
- 数据变化:识别翻页网址并去重,错误分类网址手动分类,并进一步分类
- 属性规约:只选择用户和用户选择的网页数据
模型构建
基于物品的协同滤波算法:计算物品之间的相似度,建立相似度矩阵;根据物品的相似度和用户的历史行为给用户生成推荐列表。
相似度计算方法:夹角余弦、Jaccard系数、相关系数
财政收入影响因素分析及预测模型
数据分析
- 描述性统计分析
- 相关分析
模型构建
对于财政收入、增值税、营业税、企业所得税、政府性基金、个人所得税
- Adaptive-Lasso变量选择模型:去除无关变量
- 分别建立灰色预测模型与神经网络模型
基于基站定位数据的商圈分析
数据预处理
- 属性规约:删除冗余属性,合并时间属性
- 数据变换:计算工作日人均停留时间、凌晨、周末、日均等指标,并标准化。
模型构建
- 构建商圈聚类模型:采用层次聚类算法
- 模型分析:对聚类结果进行特征观察
电商产品评论数据情感分析
文本采集:八爪鱼采集器(爬虫工具)
文本预处理:
- 文本去重:自动评价、完全重复评价、复制的评论
- 机械压缩去词:
- 删除短句
文本评论分词:采用Python中文分词包“Jieba”分词,精度达97%以上。
模型构建
- 情感倾向性模型:生成词向量;评论集子集的人工标注与映射;训练栈式自编码网
Python3数据分析与挖掘建模实战✍✍✍的更多相关文章
- Python3数据分析与挖掘建模实战 ☝☝☝
Python3数据分析与挖掘建模实战 Python数据分析简介 Python入门 运行:cmd下"python hello.py" 基本命令: 第三方库 安装 Windows中 p ...
- Python3数据分析与挖掘建模实战 学习 教程
Python3数据分析与挖掘建模实战 学习 教程 Python数据分析简介Python入门 运行:cmd下"python hello.py" 基本命令: 第三方库安装Windows ...
- Python3数据分析与挖掘建模实战
Python3数据分析与挖掘建模实战 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时 ...
- 《MATLAB数据分析与挖掘实战》赠书活动
<MATLAB数据分析与挖掘实战>是泰迪科技在数据挖掘领域探索10余年经验总结与华南师大.韩山师院.广东工大.广技师 等高校资深讲师联合倾力打造的巅峰之作.全书以实践和实用为宗旨,深度 ...
- 【读书笔记与思考】《python数据分析与挖掘实战》-张良均
[读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基 ...
- 学习参考《Python数据分析与挖掘实战(张良均等)》中文PDF+源代码
学习Python的主要语法后,想利用python进行数据分析,感觉<Python数据分析与挖掘实战>可以用来学习参考,理论联系实际,能够操作数据进行验证,基础理论的内容对于新手而言还是挺有 ...
- python数据分析与挖掘实战
<python数据分析与挖掘实战>PDF&源代码&张良均 下载:链接:https://pan.baidu.com/s/1TYb3WZOU0R5VbSbH6JfQXw提取码: ...
- 零基础数据分析与挖掘R语言实战课程(R语言)
随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况 ...
- 《Python数据分析与挖掘实战》读书笔记
大致扫了一遍,具体的代码基本都没看了,毕竟我还不懂python,并且在手机端的排版,这些代码没法看. 有收获,至少了解到以下几点: 一. Python的语法挺有意思的 有一些类似于JavaSc ...
随机推荐
- java protected 的细节
1. java的权限控制--大部分人都被错误洗脑了. 一个重大的坑,或者一个重大的误区,或者说一个洗脑了成千上万java编程者的错误概念就是: public private protected 是基于 ...
- 不写1行代码,在Mac上体验ASP.NET 5的最简单方法
昨天微软发布了ASP.NET 5 beta2(详见ASP.NET 5 Beta2 发布),对ASP.NET 5的好奇心又被激发了. 今天下午在Mac OS X上体验了一下ASP.NET 5,而且借助Y ...
- PHP递归创建多级目录(一道面试题的解题过程)
今天看到一道面试题,要写出一个可以创建多级目录的函数: 我的第一个感觉就是用递归创建,具体思路如下: function Directory($dir){ if(is_dir($dir) || @mkd ...
- PP生产订单的BADI增强 WORKORDER_UPDATE
METHOD if_ex_workorder_update~before_update. *---------------------->增强1 开始* "当生产订单类型为PP01时, ...
- Java多线程(二) 多线程的锁机制
当两条线程同时访问一个类的时候,可能会带来一些问题.并发线程重入可能会带来内存泄漏.程序不可控等等.不管是线程间的通讯还是线程共享数据都需要使用Java的锁机制控制并发代码产生的问题.本篇总结主要著名 ...
- Python 中的引用和类属性的初步理解
最近对Python 的对象引用机制稍微研究了一下,留下笔记,以供查阅. 首先有一点是明确的:「Python 中一切皆对象」. 那么,这到底意味着什么呢? 如下代码: #!/usr/bin/env py ...
- PS证件照换背景
综述 博主原创内容. 在PS里,对于抠图,比较有技术含量的便是抠头发丝了,下面为大家带来一个比较详细的抠头发丝的教程. 素材准备 在这里我们用这张图片作为抠图素材,下面让我们一步步来演示抠图的过程,并 ...
- FZYZOJ-1880 【UFO】水管
P1880 -- [ufo]水管 时间限制:1000MS 内存限制:131072KB 通过/提交人数:32/100 状态: 标签: 数学问题-组合数学 无 ...
- 使用PHPStorm 配置自定义的Apache与PHP环境
使用PHPStorm 配置自定义的Apache与PHP环境之一 关于phpstorm配置php开发环境,大多数资料都是直接推荐安装wapmserver.而对于如何配置自定义的PHP环境和Apach ...
- qemu对虚拟机的内存管理(二)
上篇文章主要分析了qemu中对虚拟机内存管理的关键数据结构及他们之间的联系,这篇文章则主要分析在地址空间发生变化时,如何将其更新至KVM中,保持用户空间与内核空间的同步. 这一系列操作与之前说的Add ...