\[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\]


\(\Large\mathbf{Proof:}\)
Let \(\displaystyle S_1=\sum_{n=1}^\infty \frac{H_n}{n^2}\) and \(\displaystyle S_2 = \sum_{n=1}^\infty(-1)^{n+1}\frac{H_n}{n^2}\). Then, our sum can be written as
\[\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2} = \frac{S_1+S_2}{2}\]
We need to find \(S_1\) and \(S_2\).
1. Calculation of \(S_1\)
Note that
\[\frac{1}{k^2}= \int_0^1\int_0^1 (xy)^{k-1}\mathrm{d}x\mathrm{d}y~,~\frac{1}{n}= \int_0^1 z^{n-1} \mathrm{d}z\]
With the help of these, \(S_1\) can be calculated.
\[\begin{align*}
S_1 &= \sum_{k=1}^\infty \frac{1}{k^2}\sum_{n=1}^k \frac{1}{n}=\sum_{k=1}^\infty \sum_{n=1}^k \int_0^1\int_0^1 (xy)^{k-1}\mathrm dx \ \mathrm dy \int_0^1 z^{n-1} \mathrm dz \\ &= \sum_{n=1}^\infty \sum_{k=n}^\infty \int_0^1\int_0^1 (xy)^{k-1}\mathrm dx \ \mathrm dy \int_0^1 z^{n-1} \mathrm dz = \int_0^1 \int_0^1 \int_0^1 \left( \sum_{n=1}^\infty \frac{(xy z)^{n-1}}{1-xy}\right)\mathrm dx \ \mathrm dy \ \mathrm dz \\
&= \int_0^1 \int_0^1 \int_0^1 \frac{1}{(1-xy)(1-xyz)}\mathrm dx \ \mathrm dy \ \mathrm dz = \int_0^1 \int_0^1 \frac{\ln(1-xy)}{xy(xy-1)}\mathrm dx \ \mathrm dy \\
&=-\int_0^1 \int_0^1 \frac{\ln(1-xy)}{xy}\mathrm dx \mathrm dy -\int_0^1 \int_0^1 \frac{\ln(1-xy)}{1-xy}\mathrm dx \ \mathrm dy \\
&=-\int_0^1 \int_0^1 \frac{\ln(1-xy)}{xy}\mathrm dx \mathrm dy+\int_0^1 \frac{\ln^2(1-y)}{2y}\mathrm dy
\end{align*}\]
We have
\[\begin{align*}
\int_0^1 \int_0^1 \frac{\ln(1-xy)}{1-xy}\mathrm{d}x \ \mathrm{d}y &=- \sum_{n=1}^\infty \frac{1}{n} \int_0^1 \int_0^1 (xy)^{n-1}\mathrm{d}x \ \mathrm{d}y \\ &= -\sum_{n=1}^\infty \frac{1}{n^3}=-\zeta(3)
\end{align*}\]
and
\[\int_0^1 \frac{\ln^2(1-y)}{2y}\mathrm{d}y = \zeta(3)\]
So
\[S_1 = 2\zeta(3)\]
2. Calculation of \(S_2\)
This can be done in the same way as the previous one. We will use
\[\dfrac{(-1)^{k-1}}{k^2} = \int_0^1 (-x)^{k-1} \mathrm{d}x \int_0^1 z^{k-1} \mathrm{d}z = (-1)^{k-1} \int_0^1 \int_0^1 (xz)^{k-1} \mathrm{d}x \mathrm{d}z\]
Proceeding like the previous one we have
\[\begin{align*}S_2 &=\sum_{k=1}^{\infty} \dfrac{(-1)^{k+1}}{k^2} \sum_{n=1}^k \dfrac{1}{n} =\sum_{k=1}^{\infty} \sum_{n=1}^k \int_0^1\int_0^1 (-1)^{k-1} (xz)^{k-1}\mathrm{d}x\mathrm{d}z \int_0^1 y^{n-1} \mathrm dy\\& = \int_0^1 \int_0^1 \int_0^1 \sum_{n=1}^{\infty} \dfrac{(-xyz)^{n-1}}{1+xz} \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_0^1 \int_0^1 \int_0^1 \dfrac1{(1+xz)(1+xyz)} \mathrm{d}x \mathrm{d}y \mathrm{d}z\\& = \int_0^1 \int_0^1 \dfrac{\ln(1+xz)}{xz(1+xz)} \mathrm{d}x \mathrm{d}z = \int_0^1 \int_0^1 \dfrac{\ln(1+xz)}{xz} \mathrm{d}x \mathrm{d}z - \int_0^1 \int_0^1 \dfrac{\ln(1+xz)}{1+xz} \mathrm{d}x \mathrm{d}z\\& = \int_0^1 \int_0^1 \dfrac{\ln(1+xz)}{xz} \mathrm{d}x \mathrm{d}z- \int_0^1 \dfrac{\ln^2(1+z)}{2z} \mathrm{d}z\end{align*}\]
Here
\[\begin{align*}
\int_0^1 \int_0^1 \dfrac{\ln(1+xz)}{xz} \mathrm{d}x \mathrm{d}z &= \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} \int_0^1 \int_0^1 (x z)^{n-1} \mathrm{d}x \mathrm{d} z \\ &= \sum_{n=1}^\infty \frac{(-1)^n}{n^3}=\frac{3}{4}\zeta(3)
\end{align*}\]
and
\[\int_0^1 \frac{\ln^2(1+z)}{2z}\mathrm{d}z = \frac{\zeta(3)}{8}\]
So
\[S_2 = \frac{5}{8}\zeta(3)\]
3. Final answer
\[\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2} = \frac{S_1+S_2}{2}= \frac{2\zeta(3)+\dfrac{5}{8}\zeta(3)}{2}=\Large\boxed{\color{blue}{\dfrac{21}{16}\zeta(3)}}\]
Note the identity
\[\psi(2n+2)+\gamma=H_{2n+1}\]
This gives us:
\[\sum_{n=0}^{\infty}\frac{\psi(2n+2)+\gamma}{(2n+1)^{2}}=\sum_{n=0}^{\infty}\frac{\psi(2n+2)}{(2n+1)^{2}}+\gamma\sum_{n=0}^{\infty}\frac{1}{(2n+1)^{2}}\]
The rightmost sum is rather famous, and evaluates to \(\displaystyle \frac{\gamma{\pi}^{2}}{8}\).
The left sum with the digamma term evaluates to
\[\Large\color{DarkGreen}{\sum_{n=0}^{\infty}\frac{\psi(2n+2)}{(2n+1)^{2}}=\frac{21}{16}\zeta(3)-\frac{\gamma{\pi}^{2}}{8}}\]

Euler Sums系列(二)的更多相关文章

  1. Euler Sums系列(六)

    \[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...

  2. Euler Sums系列(五)

    \[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...

  3. Euler Sums系列(一)

    \[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\] \(\Large\mathbf{Solution:}\) Let \[\mathcal{S}=\s ...

  4. Euler Sums系列(四)

    \[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\] \(\ ...

  5. Euler Sums系列(三)

    \[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...

  6. 前端构建大法 Gulp 系列 (二):为什么选择gulp

    系列目录 前端构建大法 Gulp 系列 (一):为什么需要前端构建 前端构建大法 Gulp 系列 (二):为什么选择gulp 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gul ...

  7. WPF入门教程系列二十三——DataGrid示例(三)

    DataGrid的选择模式 默认情况下,DataGrid 的选择模式为“全行选择”,并且可以同时选择多行(如下图所示),我们可以通过SelectionMode 和SelectionUnit 属性来修改 ...

  8. Web 开发人员和设计师必读文章推荐【系列二十九】

    <Web 前端开发精华文章推荐>2014年第8期(总第29期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...

  9. Web 前端开发人员和设计师必读文章推荐【系列二十八】

    <Web 前端开发精华文章推荐>2014年第7期(总第28期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...

随机推荐

  1. HBase 中读 HDFS 调优

    HDFS Read调优 在基于 HDFS 存储的 HBase 中,主要有两种调优方式: 绕过RPC的选项,称为short circuit reads 开启让HDFS推测性地从多个datanode读数据 ...

  2. 并发之ATOMIC原子操作--CAS乐观锁原理(二)

    1.乐观锁介绍 程序完成并发操作时,访问数据时每次不加锁,假设没有冲突去完成某项操作,如果因为冲突失败就重试,直到成功为止.就是当去做某个修改或其他操作的时候它认为不会有其他线程来做同样的操作(竞争) ...

  3. 【转载】Spring MVC入门

    转自:http://www.importnew.com/15141.html MVC框架是什么 模型-视图-控制器(MVC)是一个众所周知的以设计界面应用程序为基础的设计模式.它主要通过分离模型.视图 ...

  4. JarvisOJ - Writeup(5.31更新)

    此篇用来记录我在jarivsOJ上的一些题解,只给解题思路,不放flag Misc 0x01 You Need Python(300) 题目有两个文件,一个py文件,另一个是经过编码的key 文件ke ...

  5. php对字符串的操作2之 处理字符串的内置函数

    1,获取字串:substr($str,$start,$length) mb_substr($str,$start,$length,'utf-8'); 更换为utf8编码,能准确的截取中文 <?p ...

  6. 【Thinkphp】记录一次分页的实现

    thinkphp分页非常简单 1,控制器渲染数据: $studentList = StudentDb::paginate(5); $this->view->assign('list',$s ...

  7. 记一次使用正则表达式+foreach控制器调试

    使用forEach控制器时,变量为上一个请求返回的参数(通过正则表达式提取),设置好控制器的起始值后发现每次都是只执行一个,然后开始怀疑人生,百度了各种材料,最后还是决心好好的观察自己每一步是不是错了 ...

  8. 7_4 素数环(UVa524)<回溯法和生成-测试法的比较>

    有一个环(ring)是由n个圈圈所组成的(在这里n一定是个偶数),我们想要把1到n的自然数各放到一个圈圈中,使得相邻2个圈圈中的数的和一定是素数.下图为n=6的情形.请注意:第1个圈圈中的数一定是1. ...

  9. Hibernate第三天-Hibernate主配置信息

    今天是学习Hibernate的第三天,主要分析一下Hibernate的配置文件中的信息 Hibernate中的配置文件有两种,第一种是主配置文件hibernate.cfg.xml,第二种是映射配置文件 ...

  10. A. DZY Loves Chessboard

    DZY loves chessboard, and he enjoys playing with it. He has a chessboard of n rows and m columns. So ...