题目链接:点击打开链接

There is a rectangular grid of n rows of m initially-white cells each.

Arkady performed a certain number (possibly zero) of operations on it. In the i-th operation, a non-empty subset of rows Ri and a non-empty subset of columns Ci are chosen. For each row r in Ri and each column c in Ci, the intersection of row r and column c is coloured black.

There's another constraint: a row or a column can only be chosen at most once among all operations. In other words, it means that no pair of (i, j) (i < j) exists such that  or , where  denotes intersection of sets, and  denotes the empty set.

You are to determine whether a valid sequence of operations exists that produces a given final grid.

Input

The first line contains two space-separated integers n and m (1 ≤ n, m ≤ 50) — the number of rows and columns of the grid, respectively.

Each of the following n lines contains a string of m characters, each being either '.' (denoting a white cell) or '#' (denoting a black cell), representing the desired setup.

Output

If the given grid can be achieved by any valid sequence of operations, output "Yes"; otherwise output "No" (both without quotes).

You can print each character in any case (upper or lower).

Examples
input

Copy
5 8
.#.#..#.
.....#..
.#.#..#.
#.#....#
.....#..
output
Yes
input

Copy
5 5
..#..
..#..
#####
..#..
..#..
output
No
input

Copy
5 9
........#
#........
..##.#...
.......#.
....#.#.#
output
No
Note

For the first example, the desired setup can be produced by 3 operations, as is shown below.

For the second example, the desired setup cannot be produced, since in order to colour the center row, the third row and all columns must be selected in one operation, but after that no column can be selected again, hence it won't be possible to colour the other cells in the center column.

官方题解:

No row or column can be selected more than once, hence whenever a row r is selected in an operation, all cells in it uniquely determine the set of columns that need to be selected — let's call it Sr.

Let's assume a valid set of operations exists. Take out any two rows, i and j. If rows i and j are selected in the same operation, we can deduce that Si = Sj; if they're in different operations, we get . Therefore, if Si ≠ Sj and  hold for any pair of rows (i, j), no valid operation sequence can be found.

Otherwise (no pair violates the condition above), a valid sequence of operations can be constructed: group all rows with the same S's and carry out an operation with each group.

Thus, it's a necessary and sufficient condition for the answer to be "Yes", that for each pair of rows (i, j), either Si = Sj or holds.

The overall complexity is O(n2m). It can be divided by the system's word size if you're a bitset enthusiast, and a lot more if hashes and hash tables release their full power.

感想:我为啥不敢写暴力呢,

代码:吸一下getchar()和bool类型的二维数组

#include <cstdio>

typedef long long int64;
static const int MAXN = 53; static int n, m;
static bool a[MAXN][MAXN];
static int64 b[MAXN]; int main()
{
scanf("%d%d", &n, &m); getchar();
for (int i = 0; i < n; ++i)
for (int j = 0; j <= m; ++j) a[i][j] = (getchar() == '#'); for (int i = 0; i < n - 1; ++i)
for (int j = i + 1; j < n; ++j) {
bool all_same = true, no_intersect = true;
for (int k = 0; k < m; ++k) {
if (a[i][k] != a[j][k]) all_same = false;
if (a[i][k] && a[j][k]) no_intersect = false;
}
if (!all_same && !no_intersect) {
puts("No"); return 0;
}
} puts("Yes"); return 0;
}

Codeforces 924 A Tritonic Iridescence(暴力集合交集、相等)的更多相关文章

  1. codeforces 957 A. Tritonic Iridescence

    题意: 给出一个字符串,要求任意两个相同的字母不能相同,问这个字符串是否能有两种或者两种以上的表现形式. 思路: 简单判断一下: 1.问号在端点: 2.连续两个问号或者以上: 3.一个问号两端的字母是 ...

  2. C# List 集合 交集、并集、差集、去重, 对象集合、 对象、引用类型、交并差补、List<T>

    关键词:C#  List 集合 交集.并集.差集.去重, 对象集合. 对象.引用类型.交并差.List<T> 有时候看官网文档是最高效的学习方式! 一.简单集合 Intersect 交集, ...

  3. 关于C++里set_intersection(取集合交集)、set_union(取集合并集)、set_difference(取集合差集)等函数的使用总结

    文章转载自https://blog.csdn.net/zangker/article/details/22984803 set里面有set_intersection(取集合交集).set_union( ...

  4. Codeforces 839D Winter is here - 暴力 - 容斥原理

    Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n s ...

  5. spark 集合交集差集运算

    intersect except是spark提供的集合差集运算, 但是要求参与运算的两个dataframe,有相同的data Schema. 如果我想从 集合1(attribute1, attribu ...

  6. Codeforces Gym 100015H Hidden Code 暴力

    Hidden Code 题目连接: http://codeforces.com/gym/100015/attachments Description It's time to put your hac ...

  7. Codeforces gym 100685 A. Ariel 暴力

    A. ArielTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100685/problem/A Desc ...

  8. Codeforces Gym 100637G G. #TheDress 暴力

    G. #TheDress Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100637/problem/G ...

  9. CodeForces 277A Learning Languages (并检查集合)

    A. Learning Languages time limit per test:2 seconds memory limit per test:256 megabytes The "Be ...

随机推荐

  1. 【转】常见Java面试题 – 第三部分:重载(overloading)与重写(overriding)

    ImportNew注: 本文是ImportNew编译整理的Java面试题系列文章之一.你可以从这里查看全部的Java面试系列. 这篇文章介绍的常见面试题是关于重载(overloading)方法和重写( ...

  2. Django框架初体验

    前言 从今天开始学习测试开发知识,并会把每一次学习的过程和成果记录到博客,由于我也没怎么接触过python相关的开发框架,所以前期应该是艰难的,但是我相信努力就会有收获,如果你和我一样是个小白,那我们 ...

  3. Openstack之七:实现基于桥接的内外网络

    一.在控制端进行配置网络 #启动实例文档:https://docs.openstack.org/ocata/zh_CN/install-guide-rdo/launch-instance.html# ...

  4. APICloud联合腾讯云推出“云主机解决方案“,各种福利等你拿

    为了帮助开发者一站式打通云.开发.运维全流程服务,更全面提供基于自身业务情况的云服务器.数据库.存储等基础设施服务,APICloud联合腾讯云重磅推出“云主机解决方案“.开发者可通过控制台简单清晰的购 ...

  5. 幽灵java进程引起的: FATAL ERROR in native method

    FATAL ERROR in native method: JDWP No transports initialized, jvmtiError=AGENT_ERROR_TRANSPORT_INIT( ...

  6. 详细解析Redis中的布隆过滤器及其应用

    欢迎关注微信公众号:万猫学社,每周一分享Java技术干货. 什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告 ...

  7. 机器学习-决策树 Decision Tree

    咱们正式进入了机器学习的模型的部分,虽然现在最火的的机器学习方面的库是Tensorflow, 但是这里还是先简单介绍一下另一个数据处理方面很火的库叫做sklearn.其实咱们在前面已经介绍了一点点sk ...

  8. python专题文件操作

    一 前言 本篇文章主要对文件操作进行说明,知识追寻者创作必属精品,读完本篇你将获得基础的文件操作能力,深入理解文件操作API,基础真的很重要,不管学什么知识,故看知识追寻者的专题系列真的很不错. 二 ...

  9. python3学习笔记一

    install 安装软件包download 下载安装包uninstall 卸载安装包freeze 按照req uirements 格式输出安装包,可以到其他服务器上执行pip install -r r ...

  10. 夜深了 关于 异步Action的定义的截图