P3521 [POI2011]ROT-Tree Rotations (线段树合并)
P3521 [POI2011]ROT-Tree Rotations
题意:
给你一颗树,只有叶子节点有权值,你可以交换一个点的左右子树,问你最小的逆序对数
题解:
线段树维护权值个个数即可
然后左右子树合并时计算交换和不交换的贡献取一个min即可
代码:
/**
* ┏┓ ┏┓
* ┏┛┗━━━━━━━┛┗━━━┓
* ┃ ┃
* ┃ ━ ┃
* ┃ > < ┃
* ┃ ┃
* ┃... ⌒ ... ┃
* ┃ ┃
* ┗━┓ ┏━┛
* ┃ ┃ Code is far away from bug with the animal protecting
* ┃ ┃ 神兽保佑,代码无bug
* ┃ ┃
* ┃ ┃
* ┃ ┃
* ┃ ┃
* ┃ ┗━━━┓
* ┃ ┣┓
* ┃ ┏┛
* ┗┓┓┏━┳┓┏┛
* ┃┫┫ ┃┫┫
* ┗┻┛ ┗┻┛
*/
// warm heart, wagging tail,and a smile just for you!
//
// _ooOoo_
// o8888888o
// 88" . "88
// (| -_- |)
// O\ = /O
// ____/`---'\____
// .' \| |// `.
// / \||| : |||// \
// / _||||| -:- |||||- \
// | | \ - /// | |
// | \_| ''\---/'' | |
// \ .-\__ `-` ___/-. /
// ___`. .' /--.--\ `. . __
// ."" '< `.___\_<|>_/___.' >'"".
// | | : `- \`.;`\ _ /`;.`/ - ` : | |
// \ \ `-. \_ __\ /__ _/ .-` / /
// ======`-.____`-.___\_____/___.-`____.-'======
// `=---='
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// 佛祖保佑 永无BUG
#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <string>
#include <bitset>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
const int maxn = 3e5 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double Pi = acos(-1);
LL gcd(LL a, LL b) {
return b ? gcd(b, a % b) : a;
}
LL lcm(LL a, LL b) {
return a / gcd(a, b) * b;
}
double dpow(double a, LL b) {
double ans = 1.0;
while(b) {
if(b % 2)ans = ans * a;
a = a * a;
b /= 2;
} return ans;
}
LL quick_pow(LL x, LL y) {
LL ans = 1;
while(y) {
if(y & 1) {
ans = ans * x % mod;
} x = x * x % mod;
y >>= 1;
} return ans;
}
struct node {
int l, r, sum;
} tree[maxn * 40];
int tree_cnt;
int root[maxn];
void update(int &x, int l, int r, int val) {
if(!x) x = ++tree_cnt;
tree[x].sum++;
if(l == r) return;
int mid = (l + r) >> 1;
if(val <= mid) update(tree[x].l, l, mid, val);
else update(tree[x].r, mid + 1, r, val);
}
int n;
LL num1, num2, ans = 0;
void merge(int &x, int y) {
if(!x || !y) {
x = x + y;
return;
}
tree[x].sum += tree[y].sum;
num1 += 1LL * tree[tree[x].l].sum * tree[tree[y].r].sum;
num2 += 1LL * tree[tree[x].r].sum * tree[tree[y].l].sum;
merge(tree[x].l, tree[y].l);
merge(tree[x].r, tree[y].r);
}
void dfs(int &x) {
int val;
scanf("%d", &val);
int ls = 0, rs = 0;
if(!val) {
dfs(ls);
dfs(rs);
num1 = num2 = 0;
x = ls;
merge(x, rs);
ans += min(num1, num2);
} else {
update(x, 1, n, val);
}
}
int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
scanf("%d", &n);
int x = 0;
dfs(x);
printf("%lld\n", ans);
return 0;
}
P3521 [POI2011]ROT-Tree Rotations (线段树合并)的更多相关文章
- 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并
[BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...
- bzoj2212[Poi2011]Tree Rotations [线段树合并]
题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...
- BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对
原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...
- BZOJ.2212.[POI2011]Tree Rotations(线段树合并)
题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...
- BZOJ2212【POI2011】ROT:Tree Rotation 线段树合并
题意: 给一棵n(1≤n≤200000个叶子的二叉树,可以交换每个点的左右子树,要求叶子遍历序的逆序对最少. 分析: 求逆序对我们可以想到权值线段树,所以我们对每个点建一颗线段树(为了避免空间爆炸,采 ...
- Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并
题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...
- [bzoj2212]Tree Rotations(线段树合并)
解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...
- bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并
Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...
- bzoj2212 Tree Rotations 线段树合并+动态开点
题目传送门 思路: 区间合并线段树的题,第一次写,对于一颗子树,无论这个子树怎么交换,都不会对其他子树的逆序对造成影响,所以就直接算逆序对就好. 注意叶子节点是1到n的全排列,所以每个权值都只会出现1 ...
- BZOJ_2212_[Poi2011]Tree Rotations_线段树合并
BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...
随机推荐
- PLAY2.6-SCALA(三) 数据的返回与保存
1.修改默认的Content-Type 自动设置内容类型为text/plain val textResult = Ok("Hello World!") 自动设置内容类型为appli ...
- 使用 git 来管理 PCB 版本
使用 git 来管理 PCB 版本 在传统的 PCB 版本管理是复制一份,再重命名,写上日期,写上修改日志. 自从接触了 git 后,发现 git 的版本管理完全可以胜任,且可以做的更好. 原来使用商 ...
- HDU - 1875_畅通工程再续
畅通工程再续 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Desc ...
- Uva 10446【递推,dp】
UVa 10446 求(n,bcak)递归次数.自己推出来了一个式子: 其实就是这个式子,但是不知道该怎么写,怕递归写法超时.其实直接递推就好,边界条件易得C(0,back)=1.C(1,back)= ...
- oracle函数 VARIANCE([distinct|all]x)
[功能]统计数据表选中行x列的方差. [参数]all表示对所有的值求方差,distinct只对不同的值求方差,默认为all 如果有参数distinct或all,需有空格与x(列)隔开. [参数]x,只 ...
- auto uninstaller密钥激活码破解注册机ver 8.8.58
auto uninstaller密钥破解注册机ver 8.8.58 楼主分享几个auto uninstaller密钥破解注册机,可以用于auto uninstaller 8.8.58 .因为每个版本的 ...
- MySQL常用函数大全讲解
MySQL数据库中提供了很丰富的函数.MySQL函数包括数学函数.字符串函数.日期和时间函数.条件判断函数.系统信息函数.加密函数.格式化函数等.通过这些函数,可以简化用户的操作.例如,字符串连接函数 ...
- Libev源码分析03:Libev使用堆管理定时器
Libev中在管理定时器时,使用了堆这种结构,而且除了常见的最小2叉堆之外,它还实现了更高效的4叉堆. 之所以要实现4叉堆,是因为普通2叉堆的缓存效率较低,所谓缓存效率低,也就是说对CPU缓存的利用率 ...
- 「BZOJ3505」[CQOI2014] 数三角形
「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不 ...
- CCPC final Cockroaches
算法假了,我想的是通过枚举x,删除y的影响,这样答案第一个是没有任何问题的,但是第二个会算重复. 因为我枚举每一个x的时候,得到的y,而算另外一个x的时候,可能已经通过其他的点选到了这个点y这就有点麻 ...