Problem

对于商家来说提前识别回头客是一件集中资源提高新品销售量的头等大事,各大商家为了吸引顾客的二次购买都会实行各种像是促销、优惠券、折扣之类的策略。按理说越了解客户,越知道客户的喜好,越能精准推销,就越能实现券的高使用率,但是在初期预测一个客户的忠诚度其实是一件很困难的事。

本节就是在给定客户历史交易记录的信息预测他是否会再次光顾使用之前提供的券,在机器学习领域里这就是一个很典型的是非二元分类问题。

Data

由于原始数据量很大,有500G, 包含上百万条客户的历史交易记录数据transaction,历史商店回顾情况history以及优惠券的各项基本信息offer,为了更方便进行数据处理,需要将研究人数进行减缩。

Transaction

数据结构很简单,就是描述了某个客户某天某次在某家公司的某个商店的购买量以及购买金额。

Offer

数据集显示了此券的商家、使用条件以及折扣力度。

History

数据集包含客户在某个商圈的某家商店购买过几次,是不是一个回头客以及他收到商家的优惠券的时间

Preprocessing

在给定的特征基础上,我们extract出了几个会影响the chance of repeat purchace的人工变量:

Company

对于某家商场用户历史券使用量、使用额、前30天/60天/90天/180天使用额

CAT

对于某个类别用户历史券使用量、使用额、前30天/60天/90天/180天使用额

Brand

对于某个品牌用户历史券使用量、使用额、前30天/60天/90天/180天使用额

Combination

Offer

优惠券的力度与条件

Shopper

客户历史总消费

最终特征选取如下:

offer_quantity:1
has_bought_company_a:243.63
has_bought_brand_180:7.0
has_bought_brand_a_180:23.13
has_bought_brand_q_180:7.0
offer_value:2
has_bought_brand_a_60:14.95
has_bought_company_q:37.0
has_bought_brand_q_30:1.0
has_bought_brand:8.0
has_bought_company_q_30:6.0
has_bought_brand_30:1.0
has_bought_company_q_60:16.0
has_bought_brand_company:1
has_bought_brand_90:6.0
has_bought_company_q_180:19.0
has_bought_company_30:6.0
has_bought_brand_a:28.71
has_bought_company_a_90:106.13
has_bought_brand_q_90:6.0
never_bought_category:1
has_bought_company_180:19.0
has_bought_brand_q:9.0
has_bought_company_a_30:46.74
has_bought_company_q_90:17.0
has_bought_brand_a_30:4.59
total_spend:4140.41
has_bought_company_a_60:100.44
has_bought_brand_q_60:5.0
has_bought_company_a_180:113.21
has_bought_company_60:16.0
has_bought_brand_60:5.0
has_bought_company_90:17.0
has_bought_brand_a_90:20.64
has_bought_company:36.0

Model

Vowpal_wabbit 是在单机上速度非常快的机器学习库。

本质原因是vowpal_wabbit采用的是在线学习,也即优化方法采用的是随机梯度下降的方法。相比较batch gradient,online-learnging 的速度快,但是效果可能没有batch-learning好。

在线学习收敛速度慢,在小数据集上表现不佳,但由于不需要将所有的数据集全部加载进来,所以,在单机上也是可以处理海量的数据,一条条数据进行处理在训练的过程中观察收敛情况。但它对样本的顺序敏感,比如在预测点击的数据集中,点击的样本集中在前面,未点击的数据集中在后面,那么学习的效果就会不好。

这里使用的Python版的VW,调参情况如下:

-c -k --passes 40 says to use a cache, kill any previous cache and run 40 passes

-l 0.85 sets the learning rate to 0.85

--loss_function quantile says to use quantile regression

--quantile_tau 0.6 is a parameter to tweak when using the quantile loss function.

Evaluation

由于数据集中有200个客户没有任何使用优惠券的产品交易信息,因而预测结果为0. 总体模型预测结果良好,AUC达到0.69左右。

Case Study - 用户复购行为预测的更多相关文章

  1. Case Study: Random Number Generation(翻译教材)

    很荣幸,经过三天的努力.终于把自己翻译的教材做完了,现在把它贴出来,希望能指出其中的不足.   Case Study: Random Number Generation Fig. 6.7  C++ 标 ...

  2. Data Visualization – Banking Case Study Example (Part 1-6)

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  3. 【ASE模型组】Hint::neural 模型与case study

    模型 基于搜索的提示系统 我们的系统用Pycee针对语法错误给出提示.然而,对于语法正确.结果错误的代码,我们需要另外的解决方式.因此,我们维护一些 (错误代码, 相应提示) 的数据,该数据可以由我们 ...

  4. Deep Learning-Based Video Coding: A Review and A Case Study

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1.Abstract: 本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方 ...

  5. 课程三(Structuring Machine Learning Projects),第一周(ML strategy(1)) —— 1.Machine learning Flight simulator:Bird recognition in the city of Peacetopia (case study)

    []To help you practice strategies for machine learning, the following exercise will present an in-de ...

  6. Attacking JavaScript Engines: A case study of JavaScriptCore and CVE-2016-4622(转)

    转:http://phrack.org/papers/attacking_javascript_engines.html Title : Attacking JavaScript Engines: A ...

  7. 关于运维之故障复盘篇-Case Study

    关于故障的事后复盘,英文名 Case Study是非常有必要做的,当然是根据故障的级别,不可能做到每个故障都Case Study,除非人员和时间充足: 文档能力也是能力的一种,一般工程师的文档能力比较 ...

  8. 李宏毅机器学习课程---2、Regression - Case Study

    李宏毅机器学习课程---2.Regression - Case Study 一.总结 一句话总结: 分类讨论可能是比较好的找最佳函数的方法:如果 有这样的因素存在的话 模型不够好,可能是因素没有找全 ...

  9. 你从未见过的Case Study写作指南

    Case Study,意为案例分析,Case Study与其它的留学论文作业最大的的差别就在于Case Study在论文开始就需要明确给出论,然后再阐述这个结论的论证依据和理由.留学生们需要知道的是C ...

随机推荐

  1. html网页压缩保存到数据库,减少空间占用,实现过程遇到的解压问题

    场景: python获取到网页,把网页gzip打包,并Base64编码保存: 由java负责Base64解码并解压二进制成html 遇到的问题: 1.python 的request,缺省就把gzip响 ...

  2. c/c++判断文件是否存在

    #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <fstream> #include <cstd ...

  3. Java 添加OLE对象到Excel文档

    本文介绍通过Java程序添加OLE对象到Excel文档.OLE分为两种形式,一种通过嵌入(Embed),方式,一种通过链接(Link)方式.前者是将对象嵌入到文档中,外部对该对象的更改不影响嵌入操作时 ...

  4. iptables之路由网关共享上网/端口映射

    linux-A 主机配置eth0即可: [root@linux-A ~]# ifconfig eth0|sed -n '2p' inet addr:192.168.20.3 Bcast:192.168 ...

  5. 高并发之——深入解析Callable接口

    本文纯干货,从源码角度深入解析Callable接口,希望大家踏下心来,打开你的IDE,跟着文章看源码,相信你一定收获不小. 1.Callable接口介绍 Callable接口是JDK1.5新增的泛型接 ...

  6. TCP协议可靠性是如何保证之滑动窗口,超时重发,序列号确认应答信号

    原创文章首发于公众号:「码农富哥」,欢迎收藏和关注,如转载请注明出处! TCP 是一种提供可靠性交付的协议. 也就是说,通过 TCP 连接传输的数据,无差错.不丢失.不重复.并且按序到达. 但是在网络 ...

  7. this关键字和static关键字

    this关键字 普通方法中,this总是指向调用该方法的对象. 构造方法中,this总是指向正要初始化的对象. this区分成员变量和全局变量的作用,在当前类中可以省略. this的常用方法: 让类中 ...

  8. django 定时任务 django-crontab 的使用

    成功例子如下图: 1.前言 在做 django 开发需求时,多多少少都会遇到需要定时任务的功能,比如定时执行任务,检查订单之类的.可能是一段时间,比如每隔 10分钟执行一次,也可能是定点时间,比如 1 ...

  9. python len函数(41)

    在python中除了print函数之外,len函数和type函数应该算是使用最频繁的API了,操作都比较简单. 一.len函数简介 返回对象的长度(项目数)参数可以是序列(例如字符串str.元组tup ...

  10. Tomcat 核心配置

    tomcat的核心配置在conf/server.xml中. <Server>   根元素 <Server>即Catalina Servlet组件. <Server por ...