Problem

对于商家来说提前识别回头客是一件集中资源提高新品销售量的头等大事,各大商家为了吸引顾客的二次购买都会实行各种像是促销、优惠券、折扣之类的策略。按理说越了解客户,越知道客户的喜好,越能精准推销,就越能实现券的高使用率,但是在初期预测一个客户的忠诚度其实是一件很困难的事。

本节就是在给定客户历史交易记录的信息预测他是否会再次光顾使用之前提供的券,在机器学习领域里这就是一个很典型的是非二元分类问题。

Data

由于原始数据量很大,有500G, 包含上百万条客户的历史交易记录数据transaction,历史商店回顾情况history以及优惠券的各项基本信息offer,为了更方便进行数据处理,需要将研究人数进行减缩。

Transaction

数据结构很简单,就是描述了某个客户某天某次在某家公司的某个商店的购买量以及购买金额。

Offer

数据集显示了此券的商家、使用条件以及折扣力度。

History

数据集包含客户在某个商圈的某家商店购买过几次,是不是一个回头客以及他收到商家的优惠券的时间

Preprocessing

在给定的特征基础上,我们extract出了几个会影响the chance of repeat purchace的人工变量:

Company

对于某家商场用户历史券使用量、使用额、前30天/60天/90天/180天使用额

CAT

对于某个类别用户历史券使用量、使用额、前30天/60天/90天/180天使用额

Brand

对于某个品牌用户历史券使用量、使用额、前30天/60天/90天/180天使用额

Combination

Offer

优惠券的力度与条件

Shopper

客户历史总消费

最终特征选取如下:

offer_quantity:1
has_bought_company_a:243.63
has_bought_brand_180:7.0
has_bought_brand_a_180:23.13
has_bought_brand_q_180:7.0
offer_value:2
has_bought_brand_a_60:14.95
has_bought_company_q:37.0
has_bought_brand_q_30:1.0
has_bought_brand:8.0
has_bought_company_q_30:6.0
has_bought_brand_30:1.0
has_bought_company_q_60:16.0
has_bought_brand_company:1
has_bought_brand_90:6.0
has_bought_company_q_180:19.0
has_bought_company_30:6.0
has_bought_brand_a:28.71
has_bought_company_a_90:106.13
has_bought_brand_q_90:6.0
never_bought_category:1
has_bought_company_180:19.0
has_bought_brand_q:9.0
has_bought_company_a_30:46.74
has_bought_company_q_90:17.0
has_bought_brand_a_30:4.59
total_spend:4140.41
has_bought_company_a_60:100.44
has_bought_brand_q_60:5.0
has_bought_company_a_180:113.21
has_bought_company_60:16.0
has_bought_brand_60:5.0
has_bought_company_90:17.0
has_bought_brand_a_90:20.64
has_bought_company:36.0

Model

Vowpal_wabbit 是在单机上速度非常快的机器学习库。

本质原因是vowpal_wabbit采用的是在线学习,也即优化方法采用的是随机梯度下降的方法。相比较batch gradient,online-learnging 的速度快,但是效果可能没有batch-learning好。

在线学习收敛速度慢,在小数据集上表现不佳,但由于不需要将所有的数据集全部加载进来,所以,在单机上也是可以处理海量的数据,一条条数据进行处理在训练的过程中观察收敛情况。但它对样本的顺序敏感,比如在预测点击的数据集中,点击的样本集中在前面,未点击的数据集中在后面,那么学习的效果就会不好。

这里使用的Python版的VW,调参情况如下:

-c -k --passes 40 says to use a cache, kill any previous cache and run 40 passes

-l 0.85 sets the learning rate to 0.85

--loss_function quantile says to use quantile regression

--quantile_tau 0.6 is a parameter to tweak when using the quantile loss function.

Evaluation

由于数据集中有200个客户没有任何使用优惠券的产品交易信息,因而预测结果为0. 总体模型预测结果良好,AUC达到0.69左右。

Case Study - 用户复购行为预测的更多相关文章

  1. Case Study: Random Number Generation(翻译教材)

    很荣幸,经过三天的努力.终于把自己翻译的教材做完了,现在把它贴出来,希望能指出其中的不足.   Case Study: Random Number Generation Fig. 6.7  C++ 标 ...

  2. Data Visualization – Banking Case Study Example (Part 1-6)

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  3. 【ASE模型组】Hint::neural 模型与case study

    模型 基于搜索的提示系统 我们的系统用Pycee针对语法错误给出提示.然而,对于语法正确.结果错误的代码,我们需要另外的解决方式.因此,我们维护一些 (错误代码, 相应提示) 的数据,该数据可以由我们 ...

  4. Deep Learning-Based Video Coding: A Review and A Case Study

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1.Abstract: 本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方 ...

  5. 课程三(Structuring Machine Learning Projects),第一周(ML strategy(1)) —— 1.Machine learning Flight simulator:Bird recognition in the city of Peacetopia (case study)

    []To help you practice strategies for machine learning, the following exercise will present an in-de ...

  6. Attacking JavaScript Engines: A case study of JavaScriptCore and CVE-2016-4622(转)

    转:http://phrack.org/papers/attacking_javascript_engines.html Title : Attacking JavaScript Engines: A ...

  7. 关于运维之故障复盘篇-Case Study

    关于故障的事后复盘,英文名 Case Study是非常有必要做的,当然是根据故障的级别,不可能做到每个故障都Case Study,除非人员和时间充足: 文档能力也是能力的一种,一般工程师的文档能力比较 ...

  8. 李宏毅机器学习课程---2、Regression - Case Study

    李宏毅机器学习课程---2.Regression - Case Study 一.总结 一句话总结: 分类讨论可能是比较好的找最佳函数的方法:如果 有这样的因素存在的话 模型不够好,可能是因素没有找全 ...

  9. 你从未见过的Case Study写作指南

    Case Study,意为案例分析,Case Study与其它的留学论文作业最大的的差别就在于Case Study在论文开始就需要明确给出论,然后再阐述这个结论的论证依据和理由.留学生们需要知道的是C ...

随机推荐

  1. Docker应用部署实录(包含完善Docker安装步骤)

    Docker应用部署实录(包含完善Docker安装步骤) 前言 首先说一下这篇文章的来源.我之前接手的一个IOT项目,需要安装多个中控服务器.中控服务器需要安装RabbitMQ,Mysql,多个服务, ...

  2. Java使用自定义类加载器实现热部署

    热部署: 热部署就是在不重启应用的情况下,当类的定义即字节码文件修改后,能够替换该Class创建的对象.一般情况下,类的加载都是由系统自带的类加载器完成,且对于同一个全限定名的java类,只能被加载一 ...

  3. jmeter 源码修改返回值中文Unicode编码问题

    修改jmeter源码,可能会对其他格式的responseData有一定影响,图片或者其他 在 ListenerNotifier 类中找到 notifyListeners 方法,在其下面添加如下代码: ...

  4. 牛客练习赛39 C 流星雨 (概率dp)

    题意: 现在一共有n天,第i天如果有流星雨的话,会有wi颗流星雨. 第1天有流星雨的概率是p1. 如果第i−1 (i≥2)天有流星雨,第i天有流星雨的可能性是pi+P,否则是pi. 求n天后,流星雨颗 ...

  5. HDU 3068 最长回文 (Manacher最长回文串)

    Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正反读都是一样的字符串,如aba, abba等   Input 输 ...

  6. Linux 系统监控工具 atop

    系统监控是运维工作中重要的一环,本文以 atop 工具为例来介绍系统的重要监控项. atop可以使用yum或apt包管理器进行安装.atop man page 中详细说明了 atop 中各监控项含义及 ...

  7. Python3(三) 变量与运算符

    一.什么是变量 变量 = [1,2] 二.变量的命名规则 字母,数字,下划线,首字母不能是数字 系统关键字 不能用在变量名中 保留关键字 区别大小写 a=1,   a='1',   a=(1,2),  ...

  8. Mysql 5.7 主从复制的多线程复制配置方式

    数据库复制的主要性能问题就是数据延时 为了优化复制性能,Mysql 5.6 引入了 “多线程复制” 这个新功能 但 5.6 中的每个线程只能处理一个数据库,所以如果只有一个数据库,或者绝大多数写操作都 ...

  9. [jQuery]入口函数(一) jquery.min.js 一定要单线程下载,复制粘贴容易入坑

    jQuery入口函数 等着DOM结构渲染完毕即可执行内部代码,不必等到所有外部资源加载完毕 $(function () { // 此处是页面DOM加载完成的入口 }); $(document).rea ...

  10. leetcode—js—Add Two Numbers

    You are given two non-empty linked lists representing two non-negative integers. The digits are stor ...