High Throughput Producer

在有大量消息需要发送的情况下,默认的Kafka Producer配置可能无法达到一个可观的的吞吐。在这种情况下,我们可以考虑调整两个方面,以提高Producer 的吞吐。分别为消息压缩(message compression),以及消息批量发送(batching)。

1. Message Compression

Producer一般发送的数据都是文本数据,例如JSON ,但是这类数据的问题在于:数据量会较大,消耗较多的传输带宽。这种情况下,有必要对Producer的数据进行压缩。

  • 数据压缩可以仅在Producer level完成即可,并不需要任何Broker或Consumer端的配置更改
  • 控制压缩的参数为 compression.type,可选值为 none(默认),gzip,lz4,snappy
  • 发送给Kafka的消息的数据量越大,使用Compression的收益也就越大
  • 有博主针对压缩性能进行过测试,详细内容可以参考以下文档:https://blog.cloudflare.com/squeezing-the-firehose/

一般Producer在向kafka传输消息时会用到Producer Batch,将多条消息以一个batch的方式传输。对一个batch的消息进行压缩,然后传输给Kafka,会大大减少消息的传输、使用的网络带宽,以及减少latency:

总的来说,使用compressed batch的好处有:

  • 更小的producer request size(压缩比率最高可以达 4x)
  • 使用更少的网络带宽 => 也就是更小的延迟
  • 更高的吞吐
  • 在Kafka端更优的磁盘使用率(存储在磁盘上的消息数据量会更小)

同时也会有缺点:

  • Producers需要一些CPU资源用于压缩
  • Consumers也需要一些CPU资源用于解压缩

一般场景下,可以尝试使用 snappy 或是 lz4 作为压缩算法,它们有较好的速度以及压缩率。其他算法例如gzip,压缩率较高,但是速度较慢。对于各类不同的压缩算法,一般都是在压缩率与解压缩(以及压缩)速度这两者间做权衡,可根据实际场景进一步做测试并选择适用的压缩算法。最好的方式是:对应用场景下的数据,比较所有的压缩算法的性能,从中选出最优的压缩算法,再应用到生产。

在一个应用场景下,若是需要达到一个较高的吞吐,压缩是必须要考虑在内的。另一方面,我们也要考虑message batch。通过调整linger.ms 以及 batch.size 控制batch的大小,结合压缩,使应用达到更高的吞吐 。

2. Producer Batching

在默认情况下,Kafka Producer会尝试尽可能的发送records。之前我们介绍过一个参数max.in.flight.requests.per.connection,它表示的含义是:

  • 最多同时会有5个in flight 连接,也就是说在同一时刻,最多仅有5条message会相互独立地发送
  • 在这之后,如果有更多的messages需要被发送,而其他的连接均为in flight。则Kafka会开始将这些消息batching,并进行等待。直到返回了一个ack后,kafka会将这些消息一次性传输出去。更重要的是:此次传输仅为Producer的一个request

显而易见,batching可以让Kafka增大throughput,同时保有较低的延时。此功能也不需要做任何特殊配置,Kafka默认会使用此机制传输消息。另一方面,Batches可以有更高的压缩率,并因此达到更高的效率。

控制batch行为的参数有两个,分别为linger.ms、batch.size。

首先介绍linger.ms:

  • Linger.ms:在发送一个batch出去前,一个Producer等待的毫秒数。默认为0,也就是说Kafka会立即发送一个batch
  • 若是引入一些延迟(例如linger.ms=5),则消息以batch形式被发送的概率会增加
  • 所以在引入了一点延迟成本后,我们可以增加producer的吞吐以及压缩性能,让producer更高效
  • 如果一个batch在linger.ms时间到达之前就满了(由batch.size控制),则这个batch会被立即发送到Kafka。所以不需要担心过长的等待时间。

然后是batch.size:

  • batch.size:在一个batch中,最多能容纳的字节数。默认为16KB
  • 在大多数情况下,增加此参数到32KB或64KB可以有效提高压缩、吞吐、以及请求的性能
  • 任何超过此batch size大小的消息不会被batch
  • batch的分配基于partition数目,所以确保不要设置太高的值,以防止使用过多内存
  • 我们可以使用Kafka Producer Metrics监控average batch size 指标

3. High Throughput Producer 示例

基于之前的Java例子,我们会继续添加snappy 压缩算法到我们的producer中。对于基于文本的数据(例如日志文件或是JSON文件)来说,snappy在CPU与压缩率之间有均有权衡,相对来说是一个较好的压缩算法选择。我们也会将batch.size 增加到 32KB,并通过linger.ms 引入一个较小的延时(20ms)。

配置参数如下:

// high throughput producer at the expense of a lit bit latency and CPU usage
properties.setProperty(ProducerConfig.COMPRESSION_TYPE_CONFIG, "snappy");
properties.setProperty(ProducerConfig.LINGER_MS_CONFIG, "20");
properties.setProperty(ProducerConfig.BATCH_SIZE_CONFIG, Integer.toString(32*1024)); // 32 KB batch size

在配置以上参数后,发送给Kafka的消息即为压缩后的消息。不过在Consumer中,不需要做任何配置即可正常读取并将这些消息转回文本。

4. Max.block.ms & buffer.memory

如果一个Producer 发送消息的速度超出了broker可以处理的速度,则records会被buffer在内存中:

  • buffer.memory = 33554432(32MB)即为send buffer的默认大小
  • 此buffer会随着时间的增加而填满,并随着broker吞吐增加后,buffer数据量减少

如果buffer满了(所有32MB都被占用),则 .send() 方法会被阻塞(也就是说,Producer不会再生产更多数据,不会立即return)并等待。此等待时间由max.block.ms=60000控制,表示的是:在等待多长时间后,若存在以下任一情况,则抛出异常:

  • Producer 的send buffer沾满
  • Broker不接收任何新数据
  • 60s时间已过

如果出现这种类型的异常,则一般说明brokers 宕机,或是负载过高,导致无法响应请求。

Apache Kafka(六)- High Throughput Producer的更多相关文章

  1. apache kafka源码分析-Producer分析---转载

    原文地址:http://www.aboutyun.com/thread-9938-1-1.html 问题导读1.Kafka提供了Producer类作为java producer的api,此类有几种发送 ...

  2. Apache Kafka Producer For Beginners

    在我们上一篇Kafka教程中,我们讨论了Kafka Cluster.今天,我们将通过示例讨论Kafka Producer.此外,我们将看到KafkaProducer API和Producer API. ...

  3. Exception in thread "main" java.util.concurrent.ExecutionException: org.apache.kafka.common.errors.TimeoutException: Expiring 1 record(s) for topic_test_1219-2: 30010 ms has passed since batch creatio

    代码如下 public static void producer1() throws ExecutionException, InterruptedException { Properties pro ...

  4. 实践部署与使用apache kafka框架技术博文资料汇总

    前一篇Kafka框架设计来自英文原文(Kafka Architecture Design)的翻译及整理文章,非常有借鉴性,本文是从一个企业使用Kafka框架的角度来记录及整理的Kafka框架的技术资料 ...

  5. 【Apache Kafka】二、Kafka安装及简单示例

    (一)Apache Kafka安装 1.安装环境与前提条件   安装环境:Ubuntu16.04   前提条件: ubuntu系统下安装好jdk 1.8以上版本,正确配置环境变量 ubuntu系统下安 ...

  6. Error when sending message to topic test with key: null, value: 2 bytes with error: (org.apache.kafka.clients.producer.internals.ErrorLoggingCallback)

    windows下使用kafka遇到这个问题: Error when sending message to topic test with key: null, value: 2 bytes with ...

  7. Kafka遇到30042ms has passed since batch creation plus linger time at org.apache.kafka.clients.producer.internals.FutureRecordMetadata.valueOrError(FutureRecordMetadata.java:94)

    问题描述: 运行生产者线程的时候显示如下错误信息: Expiring 1 record(s) for XXX-0: 30042 ms has passed since batch creation p ...

  8. apache kafka系列之Producer处理逻辑

     最近研究producer的负载均衡策略,,,,我在librdkafka里边用代码实现了partition 值的轮询方法,,,但是在现场验证时,他的负载均衡不起作用,,,所以来找找原因: 下文是一篇描 ...

  9. Apache Kafka(五)- Safe Kafka Producer

    Kafka Safe Producer 在应用Kafka的场景中,需要考虑到在异常发生时(如网络异常),被发送的消息有可能会出现丢失.乱序.以及重复消息. 对于这些情况,我们可以创建一个“safe p ...

随机推荐

  1. 高数(求x的n次方的导数)

  2. 7-8 矩阵A乘以B (15分)

    7-8 矩阵A乘以B (15分)   给定两个矩阵A和B,要求你计算它们的乘积矩阵AB.需要注意的是,只有规模匹配的矩阵才可以相乘.即若A有R​a​​行.C​a​​列,B有R​b​​行.C​b​​列, ...

  3. 精心收集java基础106条

    Java基础 1.一个".java"源文件中是否可以包括多个类(不是内部类)?有什么限制? 一个Java源文件中可以定义多个类,但最多只能定义一个public的类,并且public ...

  4. Oracle 12c 多租户家族(12c 18c 19c)如何在 PDB 中添加 HR 模式

    Oracle 12c 多租户家族(12c [12.2.0.1].18c [12.2.0.2].19c [12.2.0.3])如何在 PDB 中添加模式:19c (19.3) 手工添加示例 HR 用户 ...

  5. Python 3.9.0 首个迭代版本发布了

    Python 3.9.0 alpha 1 发布了,这是 3.8 之后的首个 3.9 系列版本. ! 官方没有介绍新特性,也没有添加新模块,但是以下模块有所改进: ast asyncio curses ...

  6. phpstorm安装bootstrap插件

    一个插件可以很好的让我们工作节约时间 Bootstrap,来自 Twitter,是目前最受欢迎的前端框架.Bootstrap 是基于 HTML.CSS.JAVASCRIPT 的,它简洁灵活,使得 We ...

  7. Arcgis runtime sdk .net 二次开发

    前段时间研究了下 arcgis runtime sdk .net 二次开发··这里做个笔记 runtime版本为100.6 基于WPF 开发 命名空间引入 xmlns:esri="http: ...

  8. Spring IoC详解

    Spring IoC详解 1. 控制反转 控制反转是一种通过描述(XML或者注解)并通过第三方去产生或获取特定对象的方式.在Spring中实现控制反转的是IoC容器,其实现方法是依赖注入(Depend ...

  9. JS使用知识点理解

    var keyValue = $.request("keyValue"); $(function () { ////修改页面select下拉选框js $("#BloodB ...

  10. [CF2B] The least round way - dp

    给定由非负整数组成的n×n 的正方形矩阵,你需要寻找一条路径: 以左上角为起点 每次只能向右或向下走 以右下角为终点 并且,如果我们把沿路遇到的数进行相乘,积应当是最小"round" ...