数论,质因数,gcd——cf1033D 好题!
直接筛质数肯定是不行的
用map<ll,ll>来保存质因子的指数
考虑只有3-5个因子的数的组成情况
必定是a=pq or a=p*p or a=p*p*p or a=p*p*p*p
先用二分判后面三种情况
然后判第一种情况
由于不知道pq,而且无法直接求,我们间接用 d=gcd(a[i],a[j]) 来求
如果1<d<a[i],那么a[i]两个因数就可以确定是d,a[i]/d
反之a[i]两个因数未出现过,pq直接计算到贡献里去
但是可能有和a[i]相等的数,所以我们不先计算这样pq的数量,而是另外开一个map<ll,ll>来计算像a[i]这样的不能直接求出因子的数及其个数
然后求答案时再和另一个map分开统计,相乘
#include<bits/stdc++.h>
#include<map>
using namespace std;
#define ll long long
#define mod 998244353
map<ll,ll>mp;
map<ll,ll>::iterator it;
int n,tot;
ll a[];
ll calc4(ll x){
ll l=,r=,mid;
while(l<=r){
mid=l+r>>;
ll t=mid*mid*mid*mid;
if(t==x)return mid;
else if(t>x)r=mid-;
else l=mid+;
}
return -;
}
ll calc3(ll x){
ll l=,r=,mid;
while(l<=r){
mid=l+r>>;
ll t=mid*mid*mid;
if(t==x)return mid;
else if(t>x)r=mid-;
else l=mid+;
}
return -;
}
ll calc2(ll x){
ll l=,r=,mid;
while(l<=r){
mid=l+r>>;
ll t=mid*mid;
if(t==x)return mid;
else if(t>x)r=mid-;
else l=mid+;
}
return -;
}
map<ll,ll>has;
int main(){
cin>>n;
for(int i=;i<=n;i++)cin>>a[i];
for(int i=;i<=n;i++){
ll p=calc4(a[i]);
if(p!=-){mp[p]+=;continue;}
p=calc3(a[i]);
if(p!=-){mp[p]+=;continue;}
p=calc2(a[i]);
if(p!=-){mp[p]+=;continue;} int flag=;
for(int j=;j<=n;j++){//找p
if(i==j)continue;
ll d=__gcd(a[i],a[j]);
if(d!= && d!=a[j]){
mp[d]++;mp[a[i]/d]++;
flag=;break;
}
}
if(flag==)has[a[i]]++;//找不到p,就把a[i]存下来
}
ll ans=;
for(it=has.begin();it!=has.end();it++){//计算第二个map的贡献
ans=ans*(it->second+)%mod*(it->second+)%mod;
}
for(it=mp.begin();it!=mp.end();it++){//计算第一个map的贡献
ans=ans*(it->second+)%mod;
}
cout<<ans<<endl;
}
数论,质因数,gcd——cf1033D 好题!的更多相关文章
- 数论-质因数(gcd) UVa 10791 - Minimum Sum LCM
https://vjudge.net/problem/UVA-10791/origin 以上为题目来源Google翻译得到的题意: 一组整数的LCM(最小公倍数)定义为最小数,即 该集合的所有整数的倍 ...
- HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to ...
- 【20181027T1】洛阳怀【推结论+线性筛+分解质因数+GCD性质】
原题:CF402D [错解] 唔,先打个表看看 咦,没有坏质数好像就是质因数个数啊 那有坏质数呢? 好像变负数了 推出错误结论:f(x)=x的质因数个数,如果有个坏质数,就乘上-1 然后乱搞,起码花了 ...
- 数论 - 欧拉函数模板题 --- poj 2407 : Relatives
Relatives Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11372 Accepted: 5544 Descri ...
- (转载)关于gcd的8题
发现其实有关gcd的题目还是挺多的,这里根据做题顺序写出8题. [bzoj2818: Gcd] gcd(x,y)=质数, 1<=x,y<=n的对数 做这题的时候,懂得了一个非常重要的转化: ...
- 数论3——gcd&&lcm
gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm ( gcd就是gcd(a, b), ( •̀∀•́ ) ...
- 【POJ 1845】Sumdiv——数论 质因数 + 分治 + 快速幂
(题面来自luogu) 题目描述 输入两个正整数a和b,求a^b的所有因子之和.结果太大,只要输出它对9901的余数. 输入格式 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式 ...
- 【poj 2407】Relatives(数论--欧拉函数 模版题)
题意就是求10^9以内的正整数的欧拉函数(Φ(n)表示<=n的与n互质的正整数个数). 解法:用欧拉筛和欧拉函数的一些性质: 1.若p是质数,Φ(p)=p-1: 2.欧拉函数是积性函 ...
- HDU3988-Harry Potter and the Hide Story(数论-质因数分解)
Harry Potter and the Hide Story Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 ...
随机推荐
- beaglebone black 与电脑互传文件(夹)
1. PSCP方法 PSCP,是putty的一个组件. 1.1 下载PSCP 先给连接http://www.chiark.greenend.org.uk/~sgtatham/putty/downloa ...
- 读取.properties配置文件(转载)
读取.properties 文件 配置文件的一种,内容以键值对的形式存在,且每个键值对独占一行.#号作为行注释的起始标志,中文注释会自动进行unicode编码.示例: # ip and port of ...
- scala实现读取Oracle数据
用scala实现读取oracle数据 增加oralce的jar包后 package cn.bigdata.scala.oracle import java.sql.{DriverManager, Co ...
- eclipse导入别人项目配置tomcat和jdk
1.file--import--General--Existing Projiect into Workspace-- 2.导入项目成功后,项目会有错误,需重新进行tomcat及jdk的配置 项目名右 ...
- HDU—4046 Panda (线段树)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4046 题意:给出一个字符串,统计这个字符串任意区间中"wbw"出现的次数. 规定两 ...
- 文件的操作repeat
#_author:来童星#date:2019/12/15import os#1# print(os.name)# nt------>windows操作系统#2 用于获取当前操作系统的换行符# p ...
- Java导出pdf文件数据
提示:导出pdf文件,需要3个jar包iText-2.1.5.jar,iTextAsian.jar,iText-rtf-2.1.4.jar. public boolean outputPdfJhsy( ...
- 概率dp——cf148D
求概率应该dp数组应该顺着求 这是由初始状态来决定递推方向的 /* 盒子里有两种颜色的球,一种是黑色另一种是白色 AB轮流去球,A先取 A每次随机摸一个球 B每次随机摸一个球,然后盒子里再丢一个球 先 ...
- 最大流拆点——hdu2732,poj3436
一种很普遍的做法就是把一个带有容量的点拆成两个点,一个入点一个出点,链接两个点的边的权值为这个点的容量 hdu3732 #include<cstdio> #include<cstri ...
- react 组件的生命周期 超简版
组件从被创建到被销毁的过程称为组件的 生命周期: 通常,组件的生命周期可以被分为三个阶段:挂载阶段.更新阶段.卸载阶段: 一.挂载阶段 这个阶段组件被创建,执行初始化,并被挂载到DOM中,完成组件的第 ...