一道提高组的题。。。。。

传送门:题目在这里。。。。

现在都懒得更自己的blog了,怕是太颓废了_ (:з」∠) _

好久没做题了,手都生了。(好吧其实是做题方面手太生了)

这题我都不想讲了,把代码一贴就算了呗。。

但还是要说说的。。。。

首先,题目里说:“无向连通图G 有n 个点,n - 1 条边。”

我们可以知道这是一棵树(怕不是废话。。),这样遍历的时候就能保证是O(n)级别了。。

找最大值 很简单,遍历树的时候找一下与每个点相连的点的最大值和次大值一乘就完了。。。显然这么贪心是没问题的。。。

求和 稍微麻烦一点,但也没多麻烦。。

然后呢,“对于图G 上的点对( u, v) ,若它们的距离为2 ”

这就分为两种情况。。。

我们假定以1为根(这样就能分出父子关系),与x距离为2就分为x和x的祖父和x和x的兄弟两种。。

x和x的祖父的联合权值好算(因为只有一个),遍历的时候记录一下父亲然后查一下就完了。

x和x的兄弟稍微麻烦一点,聪明的人是不会一个一个算的,因为这样会是O(n²)级别的。

这就要搬出一个公式来了,(不知道怎么想到这一点的。。但是正确性不言而喻,不信可以自己推推。。)

\[\sum_{i=L}^{R}\sum_{j=i+1}^{R}a_i*a_j=\frac{(\sum_{i=L}^{R}a_i)^2-\sum_{i=L}^{R}a_i^2}{2}
\]

其实就是这个意思(我拿3个点举个例子吧~)

有3个点abc我们要求ab+ac+bc的时候,我们可以求出a+b+c①和a²+b²+c²②,然后(①²-②)/2即得。。

这个和和平方和我们是可以在能接受的时间内算出的。。

以上加起来就得到了代码。。我用bfs写的。。不过建议你们用dfs写就行了(这又不是会爆栈的什么省选)

然后题目说的是 “有序点对”(说明里就能看出来) 所以ans最后要2。。。(2后记得再取一次模不然会被卡到50)

然后就是最大值不用取模而求和需要取模(语文问题),这样用代码实现就可以AC啦(≧▽≦)/

然后这次的程序我是用QtCreator写的(Windows啦)。。。。(好像还配置了半天,调试器还没弄好)个人感觉界面很友好。。字体看着非常顺眼,补全也挺贴心的。。似乎也不像vs毛病特别多。。

(但换一个IDE就要换一下编译运行的快捷键也是很醉)

以上一段算是广告(当然没有广告费)纯属给大家安利一下,没有任何卵用,并不重要。。

我们上代码吧。。

#include <cstdio>
#include <queue> using std::queue;
queue<int> q;
const int p=10007;
const int N=200020;
struct edge{
int to,next;
};
edge e[N<<1]; int v[N],tot=0;
int fa[N],w[N];
bool vis[N];
int ans=0,maxn=0; inline int max(const int &a,const int &b){
if(a<b) return b; return a;
} inline int getnum(){
int a=0;char c=getchar();bool f=0;
for(;(c<'0'||c>'9')&&c!='-';c=getchar());
if(c=='-') c=getchar(),f=1;
for(;c>='0'&&c<='9';c=getchar()) a=(a<<1)+(a<<3)+c-'0';
if(f) return -a; return a;
} void build(int from, int to){
e[++tot].to=to; e[tot].next=v[from]; v[from]=tot;
} void bfs(){
while (!q.empty()) {
int x=q.front(); q.pop(); vis[x]=1;
long long numa=0,numb=0;
int mx1=0,mx2=0;
ans=(ans+w[x]*w[fa[fa[x]]])%p;
for(int i=v[x];i;i=e[i].next){
int y=e[i].to;
if(w[y]>mx1) mx2=mx1,mx1=w[y];
else mx2=max(mx2,w[y]);
if(!vis[y]){
q.push(y); fa[y]=x;
numa+=w[y]; numb+=w[y]*w[y];
}
}
long long _=(numa*numa-numb)>>1;
ans=(ans+_)%p;
maxn=max(maxn,mx1*mx2);
}
} int main(){
int n=getnum();
for(int i=1;i<n;i++){
int a=getnum(),b=getnum();
build(a,b); build(b,a);
}
for(int i=1;i<=n;i++) w[i]=getnum();
q.push(1); bfs();
printf("%d %d",maxn,(ans<<1)%p);
}

唔 就是这样。。

TG组的题对我来说还是太难了。。

我还是太弱了。。

【学术篇】luogu1351 [NOIP2014提高组] 联合权值的更多相关文章

  1. NOIP2014提高组 联合权值(距离为2的树形dp)

    联合权值 题目描述 无向连通图 GG 有 nn 个点,n-1n−1 条边.点从 11 到 nn 依次编号,编号为 ii 的点的权值为 W_iWi​,每条边的长度均为 11.图上两点 (u, v)(u, ...

  2. [NOIP2014提高组]联合权值

    题目:洛谷P1351.Vijos P1906.codevs3728.UOJ#16. 题目大意:有一个无向连通图,有n个点n-1条边,每个点有一个权值$W_i$,每条边长度为1.规定两个距离为2的点i和 ...

  3. [NOIp2014] luogu P1351 联合权值

    哎我博 4 了. 题目描述 无向连通图 GGG 有 nnn 个点,n−1n−1n−1 条边.点从 111 到 nnn 依次编号,编号为 iii 的点的权值为 WiW_iWi​,每条边的长度均为 111 ...

  4. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  5. Noip2014 提高组 T2 联合权值 连通图+技巧

    联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的 ...

  6. NOIP2014提高组第二题联合权值

    还是先看题吧: 试题描述  无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi ,每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 ...

  7. 【NOIP2014提高组】联合权值

    https://www.luogu.org/problem/show?pid=1351 既然是一棵树,就先转化成有根树.有根树上距离为2的点对,路径可能长下面这样: 枚举路径上的中间点X. 第一种情况 ...

  8. NOIP 提高组 2014 联合权值(图论???)

    传送门 https://www.cnblogs.com/violet-acmer/p/9937201.html 题解: 相关变量解释: int n; int fa[maxn];//fa[i] : i的 ...

  9. 题解【luoguP1351 NOIp提高组2014 联合权值】

    题目链接 题意:给定一个无根树,每个点有一个权值.若两个点 \(i,j\) 之间距离为\(2\),则有联合权值 \(w_i \times w_j\).求所有的联合权值的和与最大值 分析: 暴力求,每个 ...

随机推荐

  1. 改变IntelliJ IDEA 中的system和config/plugins的默认C盘的路径

    1,问题,在为idea在线安装插件时,如JProfiler,会默认安装到C盘,而本人则是希望安装到软件所在的D盘目录下,那么如何修改呢: C:\Users\xxx\.IntelliJIdea\conf ...

  2. 剑指offer——66翻转字符串

    题目描述 牛客最近来了一个新员工Fish,每天早晨总是会拿着一本英文杂志,写些句子在本子上.同事Cat对Fish写的内容颇感兴趣,有一天他向Fish借来翻看,但却读不懂它的意思.例如,“student ...

  3. csv 基本操作, 报错解决(UnicodeEncodeError: 'utf-8' codec can't encode characters in position 232-233: surrogates not allowed)

    最常用的一种方法,利用pandas包 import pandas as pd #任意的多组列表 a = [1,2,3] b = [4,5,6] #字典中的key值即为csv中列名 dataframe ...

  4. windows IIS FTP 不支持创建多级目录

    昨天因为这个事情搞了好久,因为客户那边使用的是IIS 上的FTP ,想着都差不多试着运行,结果竟然报错,说"错误550 文件不可用" 是在GetResponse()出现的异常,我用 ...

  5. w - 显示已经登录的用户以及他们在做什么

    总览 (SYNOPSIS) w - [husfV] [user] 描述 (DESCRIPTION) w 显示 系统中 当前用户 的 信息, 以及 他们 的 进程. 第一行 中 依次 显示 当前时间, ...

  6. Dubbo支持的注册中心有哪些?

    1.Dubbo协议(官方推荐协议) 优点: 采用NIO复用单一长连接,并使用线程池并发处理请求,减少握手和加大并发效率,性能较好(推荐使用) 缺点: 大文件上传时,可能出现问题(不使用Dubbo文件上 ...

  7. 8.Struts2拦截器

    1. 拦截器的概述 * 拦截器就是AOP(Aspect-Oriented Programming)的一种实现.(AOP是指用于在某个方法或字段被访问之前,进行拦截然后在之前或之后加入某些操作.) * ...

  8. WindowsPowerShell常用命令

    zai 获得Shell权限之后,可使用如下命令对系统进行文件操作: cd 后跟相应参数: cd ../ 返回上一级目录 cd +路径 跳转至制定目录(如果路径存在且正确的话) type flag.tx ...

  9. python代码{v: k for k, v in myArray.items()}是什么意思?

    最近在扒vnpy的源码总能看到{v: k for k, v in ORDERTYPE_VT2HUOBI.items()}这样的源码,就是不知道什么意思 然后万能的google找到了Quora的一个类似 ...

  10. 关于scroll、client、offset和style中的height、width、top以及bottom属性

    内容和图片来自offset.scroll.client三大家族, 此处仅作记录使用 client offset scroll