Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one pair of prime numbers p1 and p2 such that n = p1 + p2. 
This conjecture has not been proved nor refused yet. No one is sure whether this conjecture actually holds. However, one can find such a pair of prime numbers, if any, for a given even number. The problem here is to write a program that reports the number of all the pairs of prime numbers satisfying the condition in the conjecture for a given even number.

A sequence of even numbers is given as input. Corresponding to each number, the program should output the number of pairs mentioned above. Notice that we are interested in the number of essentially different pairs and therefore you should not count (p1, p2) and (p2, p1) separately as two different pairs.

InputAn integer is given in each input line. You may assume that each integer is even, and is greater than or equal to 4 and less than 2^15. The end of the input is indicated by a number 0. 
OutputEach output line should contain an integer number. No other characters should appear in the output. 
Sample Input

6
10
12
0

Sample Output

1
2
1
题意:给你一个大于等于4小于2^15的偶数,求有多少对素数满足n=p1+p2,不应将(p1,p2)和(p2,p1)分别计算为两个不同的对 线性欧拉筛 代码:
import java.util.Scanner;
public class Main {
static final int max=34000;
static int prime[]=new int[max];
static boolean is_prime[]=new boolean[max];
static int k=0;
public static void Prime(){
is_prime[0]=is_prime[1]=true;
for(int i=2;i<max;i++){
if(!is_prime[i]) prime[k++]=i;
for(int j=0;j<k&&prime[j]*i<max;j++){
is_prime[i*prime[j]]=true;
if(i%prime[j]==0) break;
}
}
}
public static void main(String[] args) {
Prime();
Scanner scan=new Scanner(System.in);
while(scan.hasNext()){
int n=scan.nextInt();
if(n==0) break;
int cnt=0;
for(int i=0;i<k&&prime[i]<=n/2;i++){
if(!is_prime[n-prime[i]]) cnt++;
}
System.out.println(cnt);
}
}
}

POJ2909_Goldbach's Conjecture(线性欧拉筛)的更多相关文章

  1. hdu3572线性欧拉筛

    用线性筛来筛,复杂度O(n) #include<bits/stdc++.h> #include<ext/rope> #define fi first #define se se ...

  2. BZOJ 2818 Gcd 线性欧拉筛(Eratosthenes银幕)

    标题效果:定整N(N <= 1e7),乞讨1<=x,y<=N和Gcd(x,y)素数的数(x,y)有多少.. 思考:推,. 建立gcd(x,y) = p,然后,x / p与y / p互 ...

  3. Goldbach's Conjecture POJ - 2262 线性欧拉筛水题 哥德巴赫猜想

    题意 哥德巴赫猜想:任一大于2的数都可以分为两个质数之和 给一个n 分成两个质数之和 线行筛打表即可 可以拿一个数组当桶标记一下a[i]  i这个数是不是素数  在线性筛后面加个装桶循环即可 #inc ...

  4. Dirichlet's Theorem on Arithmetic Progressions POJ - 3006 线性欧拉筛

    题意 给出a d n    给出数列 a,a+d,a+2d,a+3d......a+kd 问第n个数是几 保证答案不溢出 直接线性筛模拟即可 #include<cstdio> #inclu ...

  5. Sum of Consecutive Prime Numbers POJ - 2739 线性欧拉筛(线性欧拉筛证明)

    题意:给一个数 可以写出多少种  连续素数的合 思路:直接线性筛 筛素数 暴力找就行   (素数到n/2就可以停下了,优化一个常数) 其中:线性筛的证明参考:https://blog.csdn.net ...

  6. BZOJ 2190 SDOI 2008 仪仗队 线性欧拉筛

    标题效果:有一个格子组件图,假设三个人在一条直线上,那么第一个人将不会看到第三人.现在,有一个人站在(1,1)在.我问他是否能看到n*n的人数的矩阵. 思考:如果你想站(1,1)这名男子看到了一个立场 ...

  7. The Embarrassed Cryptographer POJ - 2635 同余模+高精度处理 +线性欧拉筛(每n位一起处理)

    题意:给出两数乘积K(1e100) 和 一个数L(1e6)  问有没有小于L(不能等于)的素数是K的因数 思路:把数K切割 用1000进制表示   由同余模公式知   k%x=(a*1000%x+b* ...

  8. HDU 3823 Prime Friend(线性欧拉筛+打表)

    Besides the ordinary Boy Friend and Girl Friend, here we define a more academic kind of friend: Prim ...

  9. 欧拉筛,线性筛,洛谷P2158仪仗队

    题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...

随机推荐

  1. jenkins - docker搭建jenkins

    jenkins镜像拉取 docker pull jenkins/jenkins 为jenkins镜像分配容器 docker run -d --name jenkins \ -p 8080:8080 \ ...

  2. 移动端 h5

    取消点击时候的透明区域 -webkit-tap-highlight-color: rgba(0,0,0,0); iphonex 适配 <meta name="viewport" ...

  3. Beego模板 循环和判断几个例子

    Beego模板 循环和判断几个例子 Beego的前端几乎是另一种语言.一些循环.判断,不细看文档真的做不出来. 0. Beego的View模板语法规则: beego前端(view)统一使用了 {{ 和 ...

  4. java面试记录二:spring加载流程、springmvc请求流程、spring事务失效、synchronized和volatile、JMM和JVM模型、二分查找的实现、垃圾收集器、控制台顺序打印ABC的三种线程实现

    注:部分答案引用网络文章 简答题 1.Spring项目启动后的加载流程 (1)使用spring框架的web项目,在tomcat下,是根据web.xml来启动的.web.xml中负责配置启动spring ...

  5. early-stopping的使用

    early-stopping的使用 待办 https://blog.csdn.net/qq_37430422/article/details/103638681 github对应类导入,直接放在项目更 ...

  6. 数据预处理 | 使用 pandas.to_datetime 处理时间类型的数据

    数据中包含日期.时间类型的数据可以通过 pandas 的 to_datetime 转换成 datetime 类型,方便提取各种时间信息 1 将 object 类型数据转成 datetime64 1&g ...

  7. CSS常用小技巧

    1.隐藏overflow滚动条 ::-webkit-scrollbar { display:none } 2.单行文字两端对齐(例:输入框前的label) // 若考虑兼容,文字间要有空格 { tex ...

  8. [USACO12DEC]First!

    Description Luogu3065 Solution 首先,一个串要是最小的,别的串不能是它的前缀,且和它有相同前缀的串字典序都比他小. Trie树是显然要用的,难点在于如何判断能否最小.其实 ...

  9. [codeigniter4]Upgrading from 3.x to 4.x

    CodeIgniter 4 is a rewrite of the framework, and is not backwards compatible. It is more appropriate ...

  10. CF div2 E. Water Balance

    给你n个数,你可以这样操作:使区间[l,r]的数变成 他们的平均数,求字典序最小的序列. 做法:从左往右逐个比较,比较完之后会形成一个区间,一开始是区间为1的数进行比较,到后来会 变成区间较大的进行比 ...