基于Netty的RPC架构学习笔记(六):netty5案例学习
netty5服务端入门案例
Server.java
package com.server;
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.Channel;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelOption;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.handler.codec.string.StringDecoder;
import io.netty.handler.codec.string.StringEncoder;
/**
- netty5服务端
-
*
*/
public class Server {
public static void main(String[] args) {
//服务类
ServerBootstrap bootstrap = new ServerBootstrap();
//boss和worker
//在前面的3里面的例子这里是两个线程池,在5里面做了一次封装
//EventLoopGroup这个类中还是包含线程池这个属性的
EventLoopGroup boss = new NioEventLoopGroup();
EventLoopGroup worker = new NioEventLoopGroup();
try {
//设置线程池
bootstrap.group(boss, worker);
//设置socket工厂、
//在3中 bootstrap.setFactory(new NioServerSocketChannelFactory(boss, worker));
bootstrap.channel(NioServerSocketChannel.class);
//设置管道工厂
//在3中bootstrap.setPipelineFactory(new ChannelPipelineFactory() {
//管道最终是要放到channel中的,这边不是把管道传过来,而是直接把拥有管道的channel,传过来,
//我们自己去设置管道
bootstrap.childHandler(new ChannelInitializer<Channel>() {
@Override
protected void initChannel(Channel ch) throws Exception {
ch.pipeline().addLast(new StringDecoder());
ch.pipeline().addLast(new StringEncoder());
ch.pipeline().addLast(new ServerHandler());
}
});
//netty3中对应设置如下
//bootstrap.setOption("backlog", 1024);
//bootstrap.setOption("tcpNoDelay", true);
//bootstrap.setOption("keepAlive", true);
//设置参数,TCP参数
//serverSocketchannel的设置,链接缓冲池的大小
//accept操作是从缓存队列里面拿到主机,加入有2048个主机连接进来,第2049个主机想再次连接进来
//就会被拒绝
bootstrap.option(ChannelOption.SO_BACKLOG, 2048);
//socketchannel的设置,维持链接的活跃,清除死链接
//加入有连接在很长一段时间既没有读也没有写,就会自动关掉这个连接
bootstrap.childOption(ChannelOption.SO_KEEPALIVE, true);
//socketchannel的设置,关闭延迟发送
//tcp是有批量发送的算法的,这里设置为true,进行关闭
bootstrap.childOption(ChannelOption.TCP_NODELAY, true);
//绑定端口
ChannelFuture future = bootstrap.bind(10101);
System.out.println("start");
//等待服务端关闭
//这里的channel是serversocketchannel或者监听端口的channel
//.sync()就会阻塞在这里等待channel关闭之后再继续往下走。
future.channel().closeFuture().sync();
} catch (Exception e) {
e.printStackTrace();
} finally{
//释放资源
boss.shutdownGracefully();
worker.shutdownGracefully();
}
}
}
ServerHandler.java
package com.server;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler;
/**
- 服务端消息处理
-
*
*/
public class ServerHandler extends SimpleChannelInboundHandler<String> {
@Override
protected void messageReceived(ChannelHandlerContext ctx, String msg) throws Exception {
//得到客户端发送的数据
//3中 String s = (String) e.getMessage()
//这里可以拿来直接用
System.out.println(msg);
//下面两种回写都是可以的,他们两个调用的是同一个方法
ctx.channel().writeAndFlush("hi");
ctx.writeAndFlush("hi");
}
/**
- 新客户端接入,相当于3中的channelConnected
*/
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
System.out.println("channelActive");
}
/**
- 客户端断开
*/
@Override,相当于3中的channelDisconnected
public void channelInactive(ChannelHandlerContext ctx) throws Exception {
System.out.println("channelInactive");
}
/**
- 异常
*/
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
cause.printStackTrace();
}
}
通过telnet进行测试
netty5客户端入门案例
Client.java
package com.client;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import io.netty.bootstrap.Bootstrap;
import io.netty.channel.Channel;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.codec.string.StringDecoder;
import io.netty.handler.codec.string.StringEncoder;
/**
- netty5的客户端
-
*
*/
public class Client {
public static void main(String[] args) {
//服务类
Bootstrap bootstrap = new Bootstrap();
//因为boss是监听端口的所以这里只需要worker
//worker
EventLoopGroup worker = new NioEventLoopGroup();
try {
//设置线程池
bootstrap.group(worker);
//设置socket工厂、
bootstrap.channel(NioSocketChannel.class);
//设置管道
bootstrap.handler(new ChannelInitializer<Channel>() {
@Override
protected void initChannel(Channel ch) throws Exception {
ch.pipeline().addLast(new StringDecoder());
ch.pipeline().addLast(new StringEncoder());
ch.pipeline().addLast(new ClientHandler());
}
});
ChannelFuture connect = bootstrap.connect("127.0.0.1", 10101);
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in));
while(true){
System.out.println("请输入:");
String msg = bufferedReader.readLine();
connect.channel().writeAndFlush(msg);
}
} catch (Exception e) {
e.printStackTrace();
} finally{
worker.shutdownGracefully();
}
}
}
ClientHandler
package com.client;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler;
/**
- 客户端消息处理
-
*
*/
public class ClientHandler extends SimpleChannelInboundHandler<String> {
@Override
protected void messageReceived(ChannelHandlerContext ctx, String msg) throws Exception {
System.out.println("客户端收到消息:"+msg);
}
}
单客户端多连接程序
知识普及
线程池原理图

当任务进来的时候,将任务放到各个线程对应的队列中,线程没有任务了就去队列里面取,因为有这些队列的存在所以是并发执行。
一个thread+队列======》一个单线程线程池 ======》线程安全的,任务是线性执行的
维护多个缓存对象通常会有两种设计方案,一种是做成对象池,一种是做成对象组。
对象池原理图

初始化n个对象放到队列中,如果队列中有拿出来直接用,如果队列中没有可以创建一个对象,拿去用,用完之后归还给线程池,发现多了一个对象,可以直接销毁,也可以等待线程池中有可用的对象再执行相关的任务。
对象池通常用在,对象是线程不安全的或者对象在多线程并发的时候会出现阻塞效应的时候。
对象组原理图

因为对象还在数组中,所以不需要归还对象。
数组中的对象可能会被多个对象访问,所以需要数组中的对象具有锁并发的能力,否则不适合用对象组的方式
在这个例子中Netty要并发写的是channel
结论
单个线程安全,不会产生阻塞效应,使用对象组
单个线程不安全,会产生阻塞效应,使用对象池
理论结合实际
netty中的channel是支持并发的
connect.channel().writeAndFlush(msg)//writeAndFlush往下点
|
AbstractChannelHandlerContext//writeAndFlush点击invokeWrite
|
DefaultChannelHandleInvoker
//关注writeAndFlush方法,假如当前是worker线程,就直接写,假如不是就封装成一个任务扔到一个线程池中,safeExecuteOutbound方法
|
//进入safeExecuteOutbound,里面的线程池是一个NioEventoop对象,继承自SingleThreadEventLoop,
//再继承SingleThreadEventLoopExecuter,即单线程线程池
一个thread+队列======》一个单线程线程池 ======》线程安全的,任务是线性执行的
因为channel是线程安全的,所以最后采用对象组的方式。
开干开干
MultClient.java
package com.client;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import io.netty.bootstrap.Bootstrap;
import io.netty.channel.Channel;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.codec.string.StringDecoder;
import io.netty.handler.codec.string.StringEncoder;
/**
- 多连接客户端
-
*
*/
public class MultClient {
/**
- 服务类
*/
private Bootstrap bootstrap = new Bootstrap();
/**
- 会话 缓存客户端的连接。
*/
private List<Channel> channels = new ArrayList<>();
/**
- 引用计数
*/
private final AtomicInteger index = new AtomicInteger();
/**
- 初始化
- @param count
*/
public void init(int count){
//worker
EventLoopGroup worker = new NioEventLoopGroup();
//设置线程池
bootstrap.group(worker);
//设置socket工厂、
bootstrap.channel(NioSocketChannel.class);
//设置管道
bootstrap.handler(new ChannelInitializer<Channel>() {
@Override
protected void initChannel(Channel ch) throws Exception {
ch.pipeline().addLast(new StringDecoder());
ch.pipeline().addLast(new StringEncoder());
ch.pipeline().addLast(new ClientHandler());
}
});
for(int i=1; i<=count; i++){
ChannelFuture future = bootstrap.connect("192.168.0.103", 10101);
channels.add(future.channel());
}
}
/**
- 获取会话
- @return
*/
public Channel nextChannel(){
return getFirstActiveChannel(0);
}
private Channel getFirstActiveChannel(int count){
Channel channel = channels.get(Math.abs(index.getAndIncrement() % channels.size()));
if(!channel.isActive()){
//重连
reconnect(channel);
//如果已经没有channel可用了
if(count >= channels.size()){
throw new RuntimeException("no can use channel");
}
return getFirstActiveChannel(count + 1);
}
return channel;
}
/**
- 重连
- @param channel
*/
private void reconnect(Channel channel){
synchronized(channel){
//如果是-1,说明已经不在channel数组中了,已经移除掉了
if(channels.indexOf(channel) == -1){
return ;
}
Channel newChannel = bootstrap.connect("192.168.0.103", 10101).channel();
channels.set(channels.indexOf(channel), newChannel);
}
}
}
Start.java
package com.client;
import java.io.BufferedReader;
import java.io.InputStreamReader;
/**
- 启动类
- @au
*/
public class Start {
public static void main(String[] args) {
MultClient client = new MultClient();
client.init(5);
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in));
while(true){
try {
System.out.println("请输入:");
String msg = bufferedReader.readLine();
client.nextChannel().writeAndFlush(msg);
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
运行======》输出:
start
channelActive
channelActive
channelActive
channelActive
channelActive
这个时候断开本机的网络(如果上面客户端尝试连接的是127.0.0.1的话,断开也能连接,所以即使是连接本机服务端,也要写成真正的ip地址),抛出异常
java.lang.RuntimeException:no can use channel
然后再次开启网络,在while true 的帮助下自动重连。
总结
因为channel本身就是线程安全的,所以多客户端连一个服务端的情况下,可以尝试非阻塞的方式,即对象组。
基于Netty的RPC架构学习笔记(六):netty5案例学习的更多相关文章
- 基于Netty的RPC架构学习笔记(五):netty线程模型源码分析(二)
文章目录 小技巧(如何看开源框架的源码) 源码解析 阅读源码技巧 打印查看 通过打断点调试 查看调用栈 小技巧(如何看开源框架的源码) 一断点 二打印 三看调用栈 四搜索 源码解析 //设置nioso ...
- 基于Netty的RPC架构学习笔记(二):netty服务器
文章目录 简介 Netty服务端Hello World案例 举个
- 基于Netty的RPC架构学习笔记(十二):借助spring实现业务分离、聊天室小项目、netty3和4、5的不同、业务线程池以及消息串行化
文章目录 借助spring实现业务分离(
- 基于Netty的RPC架构学习笔记(十一):粘包、分包分析,如何避免socket攻击
文章目录 问题 消息如何在管道中流转 源码解析 AbstractNioSelector.java AbstractNioWorker.java NioWorker.java DefaultChanne ...
- 基于Netty的RPC架构学习笔记(十):自定义数据包协议
文章目录 数据包简介 粘包.分包现象 数据包格式 举个
- 基于Netty的RPC架构学习笔记(九):自定义序列化协议
文章目录 为什么需要自定义序列化协议
- 基于Netty的RPC架构学习笔记(八):protocol buff学习使用
文章目录 简介 准备 protobuf配置文件 生成java代码 举个
- 基于Netty的RPC架构学习笔记(七):netty学习之心跳
文章目录 idleStateHandler netty3
- 基于Netty的RPC架构学习笔记(四):netty线程模型源码分析(一)
文章目录 如何提高NIO的工作效率 举个
随机推荐
- 编码格式分类: 前后端传递数据的编码格式contentType
urlencoded:form表单和ajax提交数据的默认编码格式 form-data:传文件 application/json:json格式数据 >>> 前后端分离 urlenco ...
- 管理员技术(七): Linux管理员 综合测试
一.Linux管理员 综合测试 目标: 根据本文提供的练习步骤完成所有练习案例. 方案: 开始练习之前,先依次重置虚拟机环境. [root@room9pc13 ~]# rht-vmctl reset ...
- Eclipse中properties文件,中文只显示Unicode问题(Properties Editor)
我们常常在properties文件中添加中文注释,而properties文件的中文需用unicode表示, 使用eclipse默认的properties文件编辑器查看显示中文为乱码. 即便修改prop ...
- mongodb副本集的内部机制(借鉴lanceyan.com)
针对mongodb的内部机制提出以下几个引导性的问题: 副本集故障转移,主节点是如何选举的?能否手动干涉下架某一台主节点. 官方说副本集数量最好是奇数,为什么? mongodb副本集是如何同步的?如果 ...
- 动态队列实现-----C语言
/***************************************************** Author:Simon_Kly Version:0.1 Date: 20170520 D ...
- Java-Class-I:org.springframework.web.mutipart.MutipartFile
ylbtech-Java-Class-I:org.springframework.web.mutipart.MutipartFile 1.返回顶部 2.返回顶部 1.1. import org.s ...
- python使用threading获取线程函数返回值的实现方法
python使用threading获取线程函数返回值的实现方法 这篇文章主要介绍了python使用threading获取线程函数返回值的实现方法,需要的朋友可以参考下 threading用于提供线程相 ...
- 6. Python运算符之算术、比较、赋值运算符
什么是运算符?举个简单的例子 4 +1 = 5 . 例子中,4 和 1 被称为操作数,"+" 和"="称为运算符. 工作中用到的运算符主要有以下几种:算术运算符 ...
- Codeforces 1173B Nauuo and Chess
题目链接:http://codeforces.com/problemset/problem/1173/B 思路参考:https://www.cnblogs.com/blowhail/p/1099123 ...
- 【三】Jmeter接口自动化测试系列之Http接口自动化实战
作者:大虫 本文介绍 Jmeter 工具的 http 接口 自动化测试 实战! 为了通用性,就拿知乎 网站作为实战例子吧! 必备技能:http接口基础知识.抓包,本文不做详细介绍,不会的可以先百度恶补 ...