LCP 2-分式化简

    public int[] fraction(int[] cont) {
        int len = cont.length;
        int[] d = new int[]{cont[len - 1], 1};
        while (len > 1) {
            d = get(cont[len - 2], d);
            len--;
        }

        return d;
    }

    private int[] get(int z, int[] c) {
        return new int[]{z * c[0] + c[1], c[0]};
    }

public int[] fraction(int[] cont) {
    int[] res = new int[2];
    res[0] = 1;
    for(int i = cont.length - 1; i >= 0; i--){
        int temp1 = res[1];
        res[1] = res[0];
        res[0] = cont[i] * res[1] + temp1;
    }
    return res;
}

LCP 2-分式化简的更多相关文章

  1. 【leetcode】LCP 2. 分式化简

    题目如下: 有一个同学在学习分式.他需要将一个连分数化成最简分数,你能帮助他吗? 连分数是形如上图的分式.在本题中,所有系数都是大于等于0的整数. 输入的cont代表连分数的系数(cont[0]代表上 ...

  2. HDU.2503 a/b + c/d (分式化简)

    a/b + c/d Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  3. YZOI Easy Round 2_化简(simplify.c/cpp/pas)

    Description 给定一个多项式,输出其化简后的结果. Input 一个字符串,只含有关于字母x 的多项式,不含括号与分式,没有多余的空格. Output 一个字符串,化简后的多项式,按照次数从 ...

  4. 线性可分SVM中线性规划问题的化简

    在网上找了许多关于线性可分SVM化简的过程,但似乎都不是很详细,所以凭借自己的理解去详解了一下. 线性可分SVM的目标是求得一个超平面(其实就是求w和b),在其在对目标样本的划分正确的基础上,使得到该 ...

  5. NOIP201402比例化简

    比例化简 [问题描述]在社交媒体上,经常会看到针对某一个观点同意与否的民意调查以及结果.例如,对某一观点表示支持的有 1498 人,反对的有 902 人,那么赞同与反对的比例可以简单的记为1498:9 ...

  6. 【mongoDB高级篇②】大数据聚集运算之mapReduce(映射化简)

    简述 mapReduce从字面上来理解就是两个过程:map映射以及reduce化简.是一种比较先进的大数据处理方法,其难度不高,从性能上来说属于比较暴力的(通过N台服务器同时来计算),但相较于grou ...

  7. 化简复杂逻辑,编写紧凑的if条件语句

    当业务逻辑很复杂,涉及多个条件的真假,或者多种条件下都会执行同一动作时,如何编写紧凑的if语句呢?本文借由一个实际例子,利用数学的布尔逻辑整理条件,最终产生if语句. 问题 在<X3 重聚> ...

  8. 《Linear Algebra and Its Application》-chaper1-行化简法解决线性方程组

    在实际生产生活中,需要我们解大量的线性方程组,例如是有探测.线性规划.电路等,这里我们便从理论角度建立一套解决线性方程组的体系. 线性方程组: 形如下面形式的方程组称为线性方程组. 回想起解决二元线性 ...

  9. poj3708:函数式化简+高精度进制转换+同余方程组

    题目大意 给定一个函数 找出满足条件   等于 k 的最小的x m,k,d已知 其中 m,k 很大需要使用高精度存储 思路: 对 函数f(m)进行化简 ,令t=ceil( log(d,m) ) 可以得 ...

随机推荐

  1. 一台机器上同时运行两个tomcat

    修改conf/server.xml文件,修改地方有三处 如图

  2. this关键字和static关键字

    this关键字 普通方法中,this总是指向调用该方法的对象. 构造方法中,this总是指向正要初始化的对象. this区分成员变量和全局变量的作用,在当前类中可以省略. this的常用方法: 让类中 ...

  3. Linux安装Redis,在测试阶段即make test出现“You need tcl 8.5 or newer in order to run the Redis test”问题解决方案

    Linux安装Redis,在测试阶段即make test出现"You need tcl 8.5 or newer in order to run the Redis test"问题 ...

  4. Winfrom 减少控件重绘闪烁的方法

    Winform控件的双缓冲.控件的双缓冲属性是隐藏的,可以通过反射改变其属性值. lv.GetType().GetProperty("DoubleBuffered", Bindin ...

  5. AndroidStudio跑起来第一个App时新手遇到的那些坑

    场景 当你看了一个Android教程,满心欢喜想要运行第一个HelloWorld时却发现,Android Studio新建的工程老是报错. 会编译不通过.运行按钮灰色.没有虚拟机,一个简简单单的Hel ...

  6. BOS只读状态修改

    update T_META_OBJECTTYPE set FSUPPLIERNAME ='PAEZ',FPACKAGEID =null

  7. 痞子衡嵌入式:ARM Cortex-M内核那些事(6)- 系统堆栈机制

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是ARM Cortex-M堆栈机制. 今天给大家分享的这篇依旧是2016年之前痞子衡写的技术文档,花了点时间重新编排了一下格式.前面痞子衡 ...

  8. [PHP] 使用PHP在mongodb中进行嵌套查询

    作为文档数据库,数据库中存储的数据是类似json的结构,比如{“modelInfo”:{"status":1,audited:"1"}},想要查询status是 ...

  9. ts中基本数据类型(上)

      /* 定义数组*/ var arr: number[] = [1, 2, 3]; var arr1: Array<number> = [1, 2, 3]; var arr2: [str ...

  10. Java对象拷贝备忘

    列举 //cglib net.sf.cglib.beans.BeanCopier.create net.sf.cglib.beans.BeanCopier.copy //spring-beans or ...