MT【285】含参数函数绝对值的最大值
(浙江2013高考压轴题)已知$a\in R$,函数$f(x)=x^3-3x^2+3ax-3a+3$
(2)当$x\in[0,2]$时,求$|f(x)|$的最大值.

分析:
由题意$f^{'}(x)=3x^2-6x+3a$
当$\Delta=36(1-a)\ge0$时,可求得极值点$x_1=1-\sqrt{1-a},x_2=1+\sqrt{1-a}$
(注:考虑到$x\in[0,2]$ 故只需考虑$0\le a\le1$时)
对应极值为$f(x_1)=1+2(1-a)\sqrt{1-a},f(x_2)=1-2(1-a)\sqrt{1-a}$
(注:求极值时用$x^2=2x-a$降次后再代入)
由$f(x_1)+f(x_2)=2>0,f(x_1)-f(x_2)=4(1-a)\sqrt{1-a}>0$得
$f(x_1)\ge|f(x_2)|$
$\because \max\{|f(x)\}=\max\{|f(x)_{min}|,|f(x)_{max}|\}$
故只需考虑
$\max\{|f(x)|\}=\max\{|f(0)|,|f(2)|,|f(x_1)|\}=\max\{|3-3a|,|3a-1|,1+2(1-a)\sqrt{1-a}\}$
由图像可得
$$\max\{|f(x)\}=
\begin{cases}
3-3a,&x\le0\\
1+2(1-a)\sqrt{1-a},&0<x<\dfrac{3}{4}\\
3a-1,&x\ge\dfrac{3}{4}\\
\end{cases}$$
注:
$|f(x)|$的最大值的题型要想到用画图去做.
题中$g(a)=1+2(1-a)\sqrt{1-a},(0<a<1)$的图像可以由$y=2a^{\frac{3}{2}}$变换得到

MT【285】含参数函数绝对值的最大值的更多相关文章
- MT【269】含参函数绝对值最大
设函数$f(x)=ax^2+(2b+1)x-a-2$($a,b\in\mathcal R$,$a\neq 0$). (1) 若$a=-2$,求函数$y=|f(x)|$在$[0,1]$上的最大值$M(b ...
- Python第七天 函数 函数参数 函数里的变量 函数返回值 多类型传值 函数递归调用 匿名函数 内置函数
Python第七天 函数 函数参数 函数里的变量 函数返回值 多类型传值 函数递归调用 匿名函数 内置函数 目录 Pycharm使用技巧(转载) Python第一天 ...
- C语言学习020:可变参数函数
顾名思义,可变参数函数就是参数数量可变的函数,即函数的参数数量是不确定的,比如方法getnumbertotal()我们即可以传递一个参数,也可以传递5个.6个参数 #include <stdio ...
- 速战速决 (3) - PHP: 函数基础, 函数参数, 函数返回值, 可变函数, 匿名函数, 闭包函数, 回调函数
[源码下载] 速战速决 (3) - PHP: 函数基础, 函数参数, 函数返回值, 可变函数, 匿名函数, 闭包函数, 回调函数 作者:webabcd 介绍速战速决 之 PHP 函数基础 函数参数 函 ...
- Swift开发第十篇——可变参数函数&初始化方法顺序
本篇分为两部分: 一.Swift中的可变参数函数 二.初始化方法的顺序 一.Swift中的可变参数函数 可变参数函数指的是可以接受任意多个参数的函数,在 OC 中,拼接字符串的函数就属于可变参数函数 ...
- C语言变参数函数
#include<iostream> #include<stdarg.h> using namespace std; int sum(int cnt, ...){ va_lis ...
- C语言中可变参数函数实现原理
C函数调用的栈结构 可变参数函数的实现与函数调用的栈结构密切相关,正常情况下C的函数参数入栈规则为__stdcall, 它是从右到左的,即函数中的最右边的参数最先入栈.例如,对于函数: void fu ...
- C可变参数函数 实现
转自:http://blog.csdn.net/weiwangchao_/article/details/4857567 C函数要在程序中用到以下这些宏: void va_start( va_list ...
- C语言可变参数函数实现原理
一.可变参数函数实现原理 C函数调用的栈结构: 可变参数函数的实现与函数调用的栈结构密切相关,正常情况下C的函数参数入栈规则为__stdcall, 它是从右到左的,即函数中的最右边的参数最先入栈. 本 ...
随机推荐
- java 浅克隆 深克隆
对象的克隆是java的一项高级技术,他可以根据给定的对象,获得与其完全相同的另一个对象. 1.浅克隆主要是复制对象的值 2.深克隆:当类存在聚合关系的时候,克隆就必须考虑聚合对象的克隆,可以复制引用类 ...
- jabRef里引用的相邻同名作者变横线
用jabRef引用同名作者的文章时,出现了第二个文章的作者变成了横线,在搜了相关资料后,发现作如下修改可避免: 1.在.bib文件中加入开关,并修改默认配置: @IEEEtranBSTCTL{IEEE ...
- Liunx 简单的命令说明
cd命令在linux中用来切换或者进入目录,路径还分为相对路径和绝对路径 cd 命令:切换当前目录至其他目录 cd /:加上斜杠表示是进入到根目录. pwd命令:查看当前路径. ()cd 进入用户主目 ...
- 【学习总结】Git学习-参考廖雪峰老师教程四-时光机穿梭
学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...
- 设置永久环境变量linux
========================================================================== http://www.cnblogs.com/Bi ...
- vant的坑
1.轮播图设置, .img { width: 100%; height: 100%; object-fit: cover; touch-action: none; } 如果不设置不能达到 保持纵横比缩 ...
- mysql 如何查看sql语句执行时间和效率
查看执行时间 1 show profiles; 2 show variables;查看profiling 是否是on状态: 3 如果是off,则 set profiling = 1: 4 执行自己的s ...
- ssl证书部署问题
问:我现在得到的ssl证书是.crt和.key两个在nginx环境下部署的证书,如果我们改用是tomcat,现在把这两个文件合成了.jks给tomcat使用,合成的时候输入的jks密码是不是就是部署在 ...
- vue之综合Demo:打沙袋
demo7.html <!DOCTYPE html> <html lang="en" xmlns:v-bind="http://www.w3.org/1 ...
- chrome中 GET /undefined 404
Chrome中调试网站,会出现 这是由 crxMouse Chrome™ 手势 引起的,关闭即可