wesome Recurrent Neural Networks

A curated list of resources dedicated to recurrent neural networks (closely related todeep learning).

Maintainers -Jiwon Kim,Myungsub Choi

We have pages for other topics:awesome-deep-vision,awesome-random-forest

Table of Contents

Codes

Theory

Lectures

Books / Thesis

Network Variants

Surveys

Applications

Language Modeling

Speech Recognition

Machine Translation

Conversation Modeling

Image Captioning

Video Captioning

Question Answering

Image Generation

Turing Machines

Robotics

Datasets

Codes

Theano- Python

Simple IPythontutorial on Theano

Deep Learning Tutorials

RNN for semantic parsing of speech

LSTM network for sentiment analysis

Keras: Theano-based Deep Learning Library

theano-rnnby Graham Taylor

Passage: Library for text analysis with RNNs

Caffe- C++ with MATLAB/Python wrappers

LRCNby Jeff Donahue

Torch- Lua

char-rnnby Andrej Karpathy : multi-layer RNN/LSTM/GRU for training/sampling from character-level language models

LSTMby Wojciech Zaremba : Long Short Term Memory Units to train a language model on word level Penn Tree Bank dataset

Oxfordby Nando de Freitas : Oxford Computer Science - Machine Learning 2015 Practicals

rnnby Nicholas Leonard : general library for implementing RNN, LSTM, BRNN and BLSTM (highly unit tested).

Etc.

RNNLIBby Alex Graves : C++ based LSTM library

RNNLMby Tomas Mikolov : C++ based simple code

neuraltalkby Andrej Karpathy : numpy-based RNN/LSTM implementation

gistby Andrej Karpathy : raw numpy code that implements an efficient batched LSTM

Theory

Lectures

Stanford NLP (CS224d) by Richard Socher

Lecture Note 3: neural network basics

Lecture Note 4: RNN language models, bi-directional RNN, GRU, LSTM

OxfordMachine Learningby Nando de Freitas

Lecture 12: Recurrent neural networks and LSTMs

Lecture 13: (guest lecture) Alex Graves on Hallucination with RNNs

Books / Thesis

Alex Graves (2008)

Supervised Sequence Labelling with Recurrent Neural Networks

Tomas Mikolov (2012)

Statistical Language Models based on Neural Networks

Ilya Sutskever (2013)

Training Recurrent Neural Networks

Richard Socher (2014)

Recursive Deep Learning for Natural Language Processing and Computer Vision

Network Variants

Bi-directional RNN [Paper]

Mike Schuster and Kuldip K. Paliwal,Bidirectional Recurrent Neural Networks, Trans. on Signal Processing 1997

LSTM [Paper]

Sepp Hochreiter and Jurgen Schmidhuber,Long Short-Term Memory, Neural Computation 1997

Multi-dimensional RNN [Paper]

Alex Graves, Santiago Fernandez, and Jurgen Schmidhuber,Multi-Dimensional Recurrent Neural Networks, ICANN 2007

GRU (Gated Recurrent Unit) [Paper]

Kyunghyun Cho, Bart van Berrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio,Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, arXiv:1406.1078 / EMNLP 2014

GFRNN [Paper-arXiv] [Paper-ICML] [Supplementary]

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio,Gated Feedback Recurrent Neural Networks, arXiv:1502.02367 / ICML 2015

Tree-Structured LSTM [Paper]

Kai Sheng Tai, Richard Socher, and Christopher D. Manning, arXiv:1503.00075 / ACL 2015

Grid LSTM [Paper]

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves,Grid Long Short-Term Memory, arXiv:1507.01526

Surveys

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnik, Bas R. Steunebrink, Jurgen Schmidhuber,LSTM: A Search Space Odyssey, arXiv:1503.04069

Zachary C. Lipton,A Critical Review of Recurrent Neural Networks for Sequence Learning, arXiv:1506.00019

Andrej Karpathy, Justin Johnson, Li Fei-Fei,Visualizing and Understanding Recurrent Networks, arXiv:1506.02078

Rafal Jozefowicz, Wojciech Zaremba, Ilya Sutskever,An Empirical Exploration of Recurrent Network Architectures, ICML, 2015.

Applications

Language Modeling

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan "Honza" Cernocky, Sanjeev Khudanpur,Recurrent Neural Network based Language Model, Interspeech 2010 [Paper]

Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan "Honza" Cernocky, Sanjeev Khudanpur,Extensions of Recurrent Neural Network Language Model, ICASSP 2011 [Paper]

Stefan Kombrink, Tomas Mikolov, Martin Karafiat, Lukas Burget,Recurrent Neural Network based Language Modeling in Meeting Recognition, Interspeech 2011 [Paper]

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky,A Hierarchical Neural Autoencoder for Paragraphs and Documents, ACL 2015 [Paper], [Code]

Speech Recognition

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury,Deep Neural Networks for Acoustic Modeling in Speech Recognition, IEEE Signam Processing Magazine 2012 [Paper]

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton,Speech Recognition with Deep Recurrent Neural Networks, arXiv:1303.5778 / ICASSP 2013 [Paper]

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio,Attention-Based Models for Speech Recognition, arXiv:1506.07503 [Paper]

Machine Translation

Univ. Montreal [Paper]

Kyunghyun Cho, Bart van Berrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio,Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, arXiv:1406.1078 / EMNLP 2014

Google [Paper]

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le,Sequence to Sequence Learning with Neural Networks, arXiv:1409.3215 / NIPS 2014

Univ. Montreal [Paper]

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio,Neural Machine Translation by Jointly Learning to Align and Translate, arXiv:1409.0473 / ICLR 2015

Google + NYU [Paper]

Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech Zaremba,Addressing the Rare Word Problem in Neural Machine Transltaion, ACL 2015

Conversation Modeling

Lifeng Shang, Zhengdong Lu, and Hang Li,Neural Responding Machine for Short-Text Conversation, arXiv:1503.02364 / ACL 2015 [Paper]

Oriol Vinyals and Quoc V. Le,A Neural Conversational Model, arXiv:1506.05869 [Paper]

Ryan Lowe, Nissan Pow, Iulian V. Serban, and Joelle Pineau,The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems, arXiv:1506.08909 [Paper]

Image Captioning

UCLA + Baidu [Web] [Paper-arXiv1], [Paper-arXiv2]

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L. Yuille,Explain Images with Multimodal Recurrent Neural Networks, arXiv:1410.1090

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan L. Yuille,Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN), arXiv:1412.6632 / ICLR 2015

Univ. Toronto [Paper] [Web demo]

Ryan Kiros, Ruslan Salakhutdinov, and Richard S. Zemel,Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, arXiv:1411.2539 / TACL 2015

Berkeley [Web] [Paper]

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell,Long-term Recurrent Convolutional Networks for Visual Recognition and Description, arXiv:1411.4389 / CVPR 2015

Google [Paper]

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan,Show and Tell: A Neural Image Caption Generator, arXiv:1411.4555 / CVPR 2015

Microsoft [Paper]

Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh Srivastava, Li Deng, Piotr Dollar, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C. Platt, Lawrence Zitnick, and Geoffrey Zweig,From Captions to Visual Concepts and Back, arXiv:1411.4952 / CVPR 2015

Microsoft [Paper-arXiv], [Paper-CVPR]

Xinlei Chen, and C. Lawrence Zitnick,Learning a Recurrent Visual Representation for Image Caption Generation

Xinlei Chen, and C. Lawrence Zitnick,Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation, CVPR 2015

Univ. Montreal + Univ. Toronto [Web] [Paper]

Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio,Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention, arXiv:1502.03044 / ICML 2015

Idiap + EPFL + Facebook [Paper]

Remi Lebret, Pedro O. Pinheiro, and Ronan Collobert,Phrase-based Image Captioning, arXiv:1502.03671 / ICML 2015

UCLA + Baidu [Paper]

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan L. Yuille,Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images, arXiv:1504.06692

Video Captioning

Berkeley [Web] [Paper]

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell,Long-term Recurrent Convolutional Networks for Visual Recognition and Description, arXiv:1411.4389 / CVPR 2015

UT Austin + UML + Berkeley [Paper]

Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, and Kate Saenko,Translating Videos to Natural Language Using Deep Recurrent Neural Networks, arXiv:1412.4729

Microsoft [Paper]

Yingwei Pan, Tao Mei, Ting Yao, Houqiang Li, and Yong Rui,Joint Modeling Embedding and Translation to Bridge Video and Language, arXiv:1505.01861

UT Austin + Berkeley + UML [Paper]

Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Darrell, and Kate Saenko,Sequence to Sequence--Video to Text, arXiv:1505.00487

Question Answering

Virginia Tech. + MSR [Web] [Paper]

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh,VQA: Visual Question Answering, arXiv:1505.00468 / CVPR 2015 SUNw:Scene Understanding workshop

MPI + Berkeley [Web] [Paper]

Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz,Ask Your Neurons: A Neural-based Approach to Answering Questions about Images, arXiv:1505.01121

Univ. Toronto [Paper] [Dataset]

Mengye Ren, Ryan Kiros, and Richard Zemel,Exploring Models and Data for Image Question Answering, arXiv:1505.02074 / ICML 2015 deep learning workshop

Baidu + UCLA [Paper] [Dataset]

Hauyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, and Wei Xu,Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering, arXiv:1505.05612

Image Generation

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo J. Rezende, and Daan Wierstra,DRAW: A Recurrent Neural Network for Image Generation,ICML 2015 [Paper]

Angeliki Lazaridou, Dat T. Nguyen, R. Bernardi, and M. Baroni,Unveiling the Dreams of Word Embeddings: Towards Language-Driven Image Generation,arXiv:1506.03500 [Paper]

Lucas Theis and Matthias Bethge,Generative Image Modeling Using Spatial LSTMs,arXiv:1506.03478 [Paper]

Turing Machines

A.Graves, G. Wayne, and I. Danihelka.,Neural Turing Machines,arXiv preprint arXiv:1410.5401 [Paper]

Jason Weston, Sumit Chopra, Antoine Bordes,Memory Networks,arXiv:1410.3916 [Paper]

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus,End-To-End Memory Networks, arXiv:1503.08895 [Paper]

Wojciech Zaremba and Ilya Sutskever,Reinforcement Learning Neural Turing Machines,arXiv:1505.00521 [Paper]

Robotics

Marvin Zhang, Sergey Levine, Zoe McCarthy, Chelsea Finn, Pieter Abbeel,Policy Learning with Continuous Memory States for Partially Observed Robotic Control,arXiv:1507.01273.[Paper]

Datasets

Speech Recognition

OpenSLR(Open Speech and Language Resources)

LibriSpeech ASR corpus

VoxForge

Image Captioning

Flickr 8k

Flickr 30k

Microsoft COCO

Image Question Answering - all based on MS COCO images

VQA

Image QA

[Multilingual Image QA] : in Chinese, with English translation

作者:hzyido 链接:https://www.jianshu.com/p/54649dad0d30 來源:简书 简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

【RNN】资源汇总的更多相关文章

  1. Kinect开发资源汇总

    Kinect开发资源汇总   转自: http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=254&highlight=kinec ...

  2. 微信小程序(应用号)资源汇总整理

    微信小应用资源汇总整理 开源项目 WeApp - 微信小程序版的微信 wechat-weapp-redux-todos - 微信小程序集成Redux实现的Todo list wechat-weapp- ...

  3. 【特别推荐】Node.js 入门教程和学习资源汇总

    这篇文章与大家分享一批很有用的 Node.js 入门教程和学习资源.Node 是一个服务器端的 JavaScript 解释器,它将改变服务器应该如何工作的概念.它的目标是帮助程序员构建高度可伸缩的应用 ...

  4. Github上PHP资源汇总大全,php学习的好资料

    Github上PHP资源汇总大全,php学习的好资料 国外程序员ziadoz 在Github上收集整理了PHP的各种资源,内容包括模板.框架.数据库.安全等方面的库和工具.汇总了各种PHP资源,供各位 ...

  5. 知名杀毒软件Mcafee(麦咖啡)个人版 资源汇总兼科普(来自卡饭)

    虽然早已不是用咖啡了,但我也实时关注的咖啡的一举一动,潜水看帖日久,发现小白众多,好多有价值的帖子淹没于帖海当中,甚是惋惜.     我有如下建议      1.咖啡区管理层,能否吧一些优秀的资源教程 ...

  6. GitHub最全的前端资源汇总仓库(包括前端学习、开发资源、求职面试等)

    在GitHub上收集的最全的前端资源汇总(包括前端学习.前端开发资源.前端求职面试等) 个人结合github上各位大神分享的资源进行了简单的汇总整理,每一个条目下面都有丰富的资料,是前端学习.工作的好 ...

  7. 数据可视化的优秀入门书籍有哪些,D3.js 学习资源汇总

    习·D3.js 学习资源汇总 除了D3.js自身以外,许多可视化工具包都是基于D3开发的,所以对D3的学习就显得很重要了,当然如果已经有了Javascript的经验,学起来也会不费力些. Github ...

  8. KbmMW资源汇总(更新中…)

    KbmMW框架是收费的,不在此提供下载,如需购买,请自行联系作者Kim Madsen. 网址资源: 官网主页:http://www.components4programmers.com/product ...

  9. ENode简介与各种资源汇总

    ENode简介与各种资源汇总 ENode是什么 ENode是一个.NET平台开源的应用开发框架,为开发人员提供了一套完整的基于DDD+CQRS+ES+(in-memory)+EDA架构风格的解决方案. ...

  10. 最新Node.js 资源汇总

    Node.js 资源汇总 文档 Node.js 官方文档:http://nodejs.org/api/ Node.js 中文文档:http://nodejs.jsbin.cn/api/ Express ...

随机推荐

  1. git中Please enter a commit message to explain why this merge is necessary.

    Please enter a commit message to explain why this merge is necessary. 请输入提交消息来解释为什么这种合并是必要的 git 在pul ...

  2. 【原创】分布式之redis的三大衍生数据结构

    引言 说起redis的数据结构,大家可能对五大基础数据类型比较熟悉:String,Hash,List,Set,Sorted Set.那么除此之外,还有三大衍生数据结构,大家平时是很少接触的,即:bit ...

  3. zookeeper-如何修改源码-《每日五分钟搞定大数据》

    本篇文章仅仅是起一个抛砖迎玉的作用,举一个如何修改源码的例子.文章的灵感来自 ZOOKEEPER-2784. 提一个问题先 之前的文章讲过zxid的设计,我们先复习下: zxid有64位,分成两部分: ...

  4. ASp.Net Mvc Core 重定向

    在之前老版本的MVC中.重定向直接写 HttpContext.Response.Redirect("/404.html") 就好了,程序走到这里会自动返回302然后跳转了, 但是这 ...

  5. 【全网最全的博客美化系列教程】01.添加Github项目链接

    全网最全的博客美化系列教程相关文章目录 [全网最全的博客美化系列教程]01.添加Github项目链接 [全网最全的博客美化系列教程]02.添加QQ交谈链接 [全网最全的博客美化系列教程]03.给博客添 ...

  6. for 循环 以及基本的数据类型

    for 循环: for 关键字 i 变量(此处可以更改 更改规则参考变量命名规则) in 关键字 可迭代对象 (想要循环谁就放谁,注意:数字除外 因为数字不可迭代) for 循环内可以进行任意操作,可 ...

  7. Jenkins - 构建Allure Report

    前言 本文为Pytest+Allure定制报告进阶篇,集成Jenkins,在Jenkins中直接生成报告,更方便测试人员查看. 一.安装插件allure-jenkins-plugin 1.进入系统管理 ...

  8. Diverse Garland CodeForces - 1108D (贪心+暴力枚举)

    You have a garland consisting of nn lamps. Each lamp is colored red, green or blue. The color of the ...

  9. Average Sleep Time CodeForces - 808B (前缀和)

    It's been almost a week since Polycarp couldn't get rid of insomnia. And as you may already know, on ...

  10. RabbitMQ 安装与使用

    RabbitMQ 安装与使用   前言 吃多了拉就是队列,吃饱了吐就是栈 使用场景 对操作的实时性要求不高,而需要执行的任务极为耗时:(发送短信,邮件提醒,更新文章阅读计数,记录用户操作日志) 存在异 ...