1,corpus 语料库

a computer-readable collection of text or speech

2,utterance 发音

比如下面一句话:I do uh main- mainly business data processing

uh 是 fillers填充词(Words like uh and um are called fillers or filled pauses )。The broken-off word main- is fragment called a fragment 

3,Types are the number of distinct words in a corpus

给你一句话,这句话里面有多少个单词呢? 标点符号算不算单词?有相同lemma的单词算不算重复的单词?比如“he is a boy and you are a girl”,这句话中 “is”和 "are"的lemma 都是 be。另外,这句话中 "a" 出现了两次。那这句话有多少个单词?这就要看具体的统计单词个数的方式了。

Tokens are the total number N of running words.

4,Morphemes

A Morpheme is the smallest division of text that has meaning. Prefxes and suffxes are examples of morphemes

These are the smallest units of a word that is meaningful. 比如说:“bounded”,"bound"就是一个 morpheme,而Morphemes而包含了后缀 ed

5,Lemma(词根) 和 Wordform(词形)

Cat 和 cats 属于相同的词根,但是却是不同的词形。

Lemma 和 stem 有着相似的意思:

6,stem

Stemming is the process of finding the word stem of a word 。比如,walking 、walked、walks 有着相同的stem,即: walk

与stem相关的一个概念叫做 lemmatization,它用来确定一个词的基本形式,这个过程叫做lemma。比如,单词operating,它的stem是 ope,它的lemma是operate

Lemmatization is a more refined process than stemming and uses vocabulary and morphological techniques to find a lemma. This can result in more precise analysis in some situations 。

The lemmatization process determines the lemma of a word. A lemma can be thought of as the dictionary form of a word.

(Lemmatization 要比 stemming 复杂,但是它们都是为了寻找 单词的 “根”)。但是Lemmatization 更复杂,它用到了一些词义分析(finding the morphological or vocabulary meaning of a token)

Stemming and lemmatization: These processes will alter the words to get to their "roots".  Similar to stemming is Lemmatization. This is the process of fnding its lemma, its form as found in a dictionary.

Stemming is frequently viewed as a more primitive technique, where the attempt to get to the "root" of a word involves cutting off parts of the beginning and/or ending of a token.

Lemmatization can be thought of as a more sophisticated approach where effort is devoted to finding the morphological or vocabulary meaning of a token。

比如说 having 的 stem 是 hav,但是它的 lemma 是have

再比如说 was 和 been 有着不同的 stem,但是有着相同的 lemma : be

7,affix 词缀 (prefix 和 suffxes)

比如说:一个单词的 现在进行时,要加ing,那么 ing 就是一个后缀。

This precedes or follows the root of a word . 比如说,ation 就是 单词graduation的后缀。

8,tokenization (分词)

就是把一篇文章拆分成一个个的单词。The process of breaking text apart is called tokenization

9,Delimiters (分隔符)

要把一个句子 分割成一个个的单词,就需要分隔符,常用的分隔符有:空格、tab键(\t);还有 逗号、句号……这个要视具体的处理任务而定。

The elements of the text that determine where elements should be split are called Delimiters 。

10,categorization (归类)

把一篇文本,提取中心词,进行归类,来说明这篇文章讲了什么东西。比如写了一篇blog,需要将这篇blog的个人分类,方便以后查找。

This is the process of assigning some text element into one of the several possible groups.

11,stopwords

某些NLP任务需要将一些常出现的“无意义”的词去掉,比如:统计一篇文章频率最高的100个词,可能会有大量的“is”、"a"、"the" 这类词,它们就是 stopwords。

Commonly used words might not be important for some NLP tasks such as general searches. These common words are called stopwords

由于大部分文本都会包含 stopwords,因此文本分类时,最好去掉stopwords。关于stopwords的一篇参考文章

12,Normalization (归一化)

将一系列的单词 转化成 某种 统一 的形式,比如:将一句话的各个单词中,有大写、有小写,将之统一转成 小写。再比如,一句话中,有些单词是 缩写词,将之统一转换成全名。

Normalization is a process that converts a list of words to a more uniform sequence.

Normalization operations can include the following:(常用的归一化操作有如下几种)

converting characters to lowercase(大小写转换),expanding abbreviation(缩略词变成全名), removing stopwords(移除一些常见的“虚词”), stemming, and lemmatization.(词干或者词根提取)

参考资料

《JAVA自然语言处理》Natural Language processing with java

原文:http://www.cnblogs.com/hapjin/p/7581335.html

NLP里面的一些基本概念的更多相关文章

  1. 自然语言处理NLP学习笔记一:概念与模型初探

    前言 先来看一些demo,来一些直观的了解. 自然语言处理: 可以做中文分词,词性分析,文本摘要等,为后面的知识图谱做准备. http://xiaosi.trs.cn/demo/rs/demo 知识图 ...

  2. 自然语言处理(NLP) - 数学基础(3) - 概率论基本概念与随机事件

    好像所有讲概率论的文章\视频都离不开抛骰子或抛硬币这两个例子, 因为抛骰子的确是概率论产生的基础, 赌徒们为了赢钱就不在乎上帝了才导致概率论能突破宗教的绞杀, 所以我们这里也以抛骰子和抛硬币这两个例子 ...

  3. DeepNLP的核心关键/NLP词的表示方法类型/NLP语言模型 /词的分布式表示/word embedding/word2vec

    DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NL ...

  4. 认知升级:提升理解层次的NLP思维框架

    NLP(神经语言程序学)是由理查德·班德勒和约翰·格林德在1976年创办的一门学问,美国前总统克林顿.微软领袖比尔盖茨.大导演斯皮尔博格等许多世界名人都接受过 NLP培训,世界500强企业中的 60% ...

  5. 自然语言处理(NLP)——简介

    自然语言处理(NLP Natural Language Processing)是一种专业分析人类语言的人工智能.就是在机器语⾔和⼈类语言之间沟通的桥梁,以实现人机交流的目的. 在人工智能出现之前,机器 ...

  6. (转)TensorFlow 入门

        TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Da ...

  7. Noisy Channel模型纠正单词拼写错误

    本文介绍 Stanford<From Languages to Information>课程中讲到的 单词拼写错误 纠正.背后的数学原理主要是贝叶斯公式.单词拼写错误纠正主要涉及到两个模型 ...

  8. 论文笔记:Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language Association

    Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language ...

  9. 词嵌入向量WordEmbedding

    词嵌入向量WordEmbedding的原理和生成方法   WordEmbedding 词嵌入向量(WordEmbedding)是NLP里面一个重要的概念,我们可以利用WordEmbedding将一个单 ...

随机推荐

  1. Leetcode 11.盛最多水的容器 By Python

    给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0).找出其中的两条线, ...

  2. linux中,使用cat、head、tail命令显示文件指定行

    小文件可以用cat(也可以用head.tail) 显示文件最后20行:cat err.log | tail -n 20 显示文件前面20行:cat err.log | head -n 20 从20行开 ...

  3. 20165223 week2测试补交与总结

    测试题二 题目: 在Ubuntu或Windows命令行中 建如下目录结构 Hello.java的内容见附件package isxxxx; (xxxx替换为你的四位学号) 编译运行Hello.java ...

  4. Android 新架构组件 -- WorkManager

    Android WorkManager compile "android.arch.work:work-runtime:1.0.0-alpha02" 继承Worker类并实现doW ...

  5. ajax 执行成功 没有返回

    提交表单 或执行ajax 的按钮,只能使用 input type=“button”  标签

  6. 模拟赛 yjqb

    对于这种“不能交叉”的条件,不是很好处理.那么就考虑一下dp dp[i][j]表示,考虑A中用前i个,考虑连接B中用前j个,最大匹配.(类似LCS的DP) 转移:dp[i][j]=max(dp[i][ ...

  7. A1137. Final Grading

    For a student taking the online course "Data Structures" on China University MOOC (http:// ...

  8. IT项目管理分享7个开源项目管理工具

    在一项调查中,有 71% 的组织表示他们在开发过程中会用到敏捷方法. 此外,用敏捷方法管理项目比传统方法管理项目成功率高 28%.在这次工具推荐中,我们从一些比较受欢迎的开源项目管理工具中摘取了支持敏 ...

  9. 2019阿里校招测评题,光明小学完全图最短路径问题(python实现)

    题目:光明小学的小朋友们要举行一年一度的接力跑大赛了,但是小朋友们却遇到了一个难题:设计接力跑大赛的线路,你能帮助他们完成这项工作么?光明小学可以抽象成一张有N个节点的图,每两点间都有一条道路相连.光 ...

  10. Good Bye 2018 B. New Year and the Treasure Geolocation

    传送门 https://www.cnblogs.com/violet-acmer/p/10201535.html 题意: 在二维空间中有 n 个 obelisk 点,n 个 p 点: 存在坐标T(x, ...