bzoj1563

思路

首先考虑\(n^2\)的暴力dp,用sum[i]表示前i句话的长度总和。f[i]表示前i句话最小的不协调度之和。转移的时候考虑枚举前面的每个点,找到转移的最优秀的那个点。

然后优化这个暴力。用一个队列存下当前个点之后的点中,哪个区间是从当前点转移更优秀(称为这个点的控制范围)。然后如果当前枚举的位置已经超过队首控制范围。那么队首就可以弹出了。加入新点时,如果队尾控制范围的最左侧也是从当前点转移更优秀,那么队尾就可以弹出了。然后二分当前点与队尾点控制范围的分界点。并且将当前点入队。

代码

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long double ll;
const int N=100000+10;
int read() {
int x=0, tmp=1;
char ch=getchar();
//wxywwwwwwwwwwwwwwwwwwww
while( (ch<'0') || (ch>'9') ){
if(ch=='-')tmp=-1; ch=getchar();}
while( (ch>='0')&&(ch<='9') ){
x=x*10+ch-'0';ch=getchar();
}//wxywwwwwwwwwwwwwwww
return (x*tmp);
}
int n;
ll P,Std;
ll f[N],sum[N];
ll qm(ll x) {//快速幂
if(x<0) x=-x;
ll ans=1;
int y=P;
for(ll now=x;y;y>>=1,now=now*now)
if(y&1) ans*=now;
return ans;
}
ll calc(int x,int y) {//计算函数
return f[y]+qm(sum[x]-sum[y]-Std-1);
}
int find(int l,int r,int x,int y) {//二分从l到r中x比y优秀的第一个位置
int ans=n;
while(l<=r) {
int mid=(l+r)>>1;
if(calc(mid,x)<calc(mid,y)) ans=mid,r=mid-1;
else l=mid+1;
}
return ans;
} char s[35];
struct node {
int xh,l,r;
node () {
xh=l=r=0;
}
node (int x,int L,int R) {
xh=x,l=L,r=R;
}
}q[N];
int main() {
int T=read();
while(T--) {
int head=1,tail=0;
n=read();Std=read();P=read();
for(int i=1;i<=n;++i) {
scanf("%s",s);
sum[i]=sum[i-1]+strlen(s)+1;
}
q[++tail]=node(0,1,n);
for(int i=1;i<=n;++i) {
while(head<=tail&&q[head].r<i) head++;//超出队首控制范围
f[i]=calc(i,q[head].xh);
if(calc(n,i) >calc(n,q[tail].xh)) continue;//如果最后一个点都是从队尾转移优秀,那就不用入队了
while(head<=tail&&calc(q[tail].l,i)<calc(q[tail].l,q[tail].xh)) tail--;//将队尾出队
q[tail].r=find(q[tail].l,n,i,q[tail].xh)-1;//更改控制范围
q[++tail]=node(i,q[tail-1].r+1,n);.//入队
} if(f[n]>1e18) puts("Too hard to arrange");
else
printf("%lld\n",(long long)f[n]);
puts("--------------------");
} return 0;
}

[bzoj1563][诗人小g]的更多相关文章

  1. bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)

    目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...

  2. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  3. C++之路进阶——codevs2933(诗人小G)

    2933 诗人小G 2009年NOI全国竞赛  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master     题目描述 Description 小G是一个出色的诗人 ...

  4. LG1912 [NOI2009]诗人小G

    题意 题目描述 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以 ...

  5. 1563: [NOI2009]诗人小G

    1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...

  6. 【Luogu1912】【NOI2009】诗人小G(动态规划)

    [Luogu1912][NOI2009]诗人小G(动态规划) 题面 洛谷 题解 原来\(NOI\)这么多神仙题... 考虑一个极其明显的\(dp\) 设\(f[i]\)表示前\(i\)个句子产生的最小 ...

  7. [NOI2009]诗人小G --- DP + 决策单调性

    [NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...

  8. NOI 2009A 诗人小G

    NOI 2009A 诗人小G 诗人小G [问题描述] 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们 ...

  9. P1912 [NOI2009]诗人小G

    P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f( ...

随机推荐

  1. MHA高可用及读写分离

    一.MHA简介 二.工作流程 三.MHA架构图 四.MHA工具介绍 五.基于GTID的主从复制 六.部署MHA 七.配置VIP漂移 八.配置binlog-server 九.MySQL中间件Atlas

  2. SCP传送文件时提示No ECDSA host key is known forx.x.x.x and you have requested strict checking.问题的解决办法

    在使用SCP向其他设备传送文件时,打印如下错误: No ECDSA host key is known for x.x.x.x and you have requested strict checki ...

  3. FormDestroy 和 FormClose 有什么区别和联系?

    1.窗口的所有资源真正释放时调用 FormDestroy.当你关闭窗口时,VCL会调用FormClose,如果你在FormClose里写Action = caFree,那么VCL会继续调用FormDe ...

  4. vscode git设置

    vscode只能打开一下界面: 在setting.path增加git.path选项,再使用linux的方法配置路径,就是使用D:/../bin/git.exe而不是\\ 重启vscode,git设置即 ...

  5. Vue之v-for、v-show使用举例

    demo.html <!DOCTYPE html> <html lang="en" xmlns:v-bind="http://www.w3.org/19 ...

  6. Hibernate 连接不同数据库的方言

    RDBMS 方言 DB2 org.hibernate.dialect.DB2Dialect DB2 AS/400 org.hibernate.dialect.DB2400Dialect DB2 OS3 ...

  7. mpi4python

    转载:https://zhuanlan.zhihu.com/p/25332041 前言 在高性能计算的项目中我们通常都会使用效率更高的编译型的语言例如C.C++.Fortran等,但是由于Python ...

  8. Reading Text from Images Using C#

    Introduction By using Optical Character Recognition (OCR), you can detect and extract handwritten an ...

  9. hibernate主配置文件中指定session与当前线程绑定

    配置一条属性 <property name="hibernate.current_session_context_class">thread</property& ...

  10. ftell 的使用

    ftell一般用于读取文件的长度,下面补充一个例子,读取文本文件中的内容: #include <stdio.h> #include <stdlib.h> int main() ...