斯坦福大学公开课机器学习:advice for applying machine learning - deciding what to try next(设计机器学习系统时,怎样确定最适合、最正确的方法)
假如我们在开发一个机器学习系统,想试着改进一个机器学习系统的性能,我们应该如何决定接下来应该选择哪条道路?
为了解释这一问题,以预测房价的学习例子。假如我们已经得到学习参数以后,要将我们的假设函数放到一组新的房屋样本上进行测试,这个时候我们会发现在预测房价时,产生了巨大的误差,现在我们的问题是要想改进这个算法接下来应该怎么办?

实际上我们可以想出很多种方法来改进算法的性能,其中一种办法是使用更多的训练样本。具体来讲,通过电话调查、上门调查,获取更多的不同的房屋出售数据。遗憾的是,好多人花费了大量时间在收集更多的训练样本上,他们总认为要是有两倍甚至十倍数量的训练数据那就一定会解决问题的。但有时候,获得更多的训练数据,实际上并没有作用,接下来,我们将解释原因。另一个方法,我们也许能想到的是尝试选用更少的特征集,比如X1,X2,X3等等。我们也许可以花一点时间,从这些特征中仔细挑选一小部分来防止过拟合。或者也许需要用更多的特征,假如目前的特征集对你来讲并不是很有帮助,你希望从获取更多特征的角度来收集更多的数据。同样的,你可以把这个问题扩展为一个很大的项目,比如使用电话调查,来得到更多的房屋案例,或者再进行土地测量来获得更多有关这块土地的信息等等,因此这是一个复杂的问题。同样的道理,我们非常希望在花费大量时间完成这些工作之前,我们就能知道其效果如何。我们也可以尝试增加多项式特征的方法,比如x1的平方,x2的平方,X1,X2的乘积。我们可以花很多时间来考虑这一方法,我们也可以考虑其他方法,减小或增大正则化参数lambda的值。

上面列出的6个原因,都可以扩展成一个六个月或更长时间的项目。遗憾的是,大多数人用来选择这些方法的标准,是凭感觉,也就是说大多数人的选择方法是,随便从这些方法中选择一种,比如他们会说“我们来多找点数据吧”,然后花上六个月的时间收集了一大堆数据,然后也许另一个人说,“让我们来从这些房子的数据中多找点特征吧”。很多人花了至少六个月时间来完成他们随便选择的一种方法,而在六个月或者更长时间后,他们很遗憾地发现自己选择的是一条不归路。
斯坦福大学公开课机器学习:advice for applying machine learning - deciding what to try next(设计机器学习系统时,怎样确定最适合、最正确的方法)的更多相关文章
- 斯坦福大学公开课机器学习: advice for applying machine learning | deciding what to try next(revisited)(针对高偏差、高方差问题的解决方法以及隐藏层数的选择)
针对高偏差.高方差问题的解决方法: 1.解决高方差问题的方案:增大训练样本量.缩小特征量.增大lambda值 2.解决高偏差问题的方案:增大特征量.增加多项式特征(比如x1*x2,x1的平方等等).减 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 6) Advice for Applying Machine Learning & Machine Learning System Design
(1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来 ...
- 斯坦福大学公开课机器学习:advice for applying machine learning | diagnosing bias vs. variance(机器学习:诊断偏差和方差问题)
当我们运行一个学习算法时,如果这个算法的表现不理想,那么有两种原因导致:要么偏差比较大.要么方差比较大.换句话说,要么是欠拟合.要么是过拟合.那么这两种情况,哪个和偏差有关.哪个和方差有关,或者是不是 ...
- 第19月第8天 斯坦福大学公开课机器学习 (吴恩达 Andrew Ng)
1.斯坦福大学公开课机器学习 (吴恩达 Andrew Ng) http://open.163.com/special/opencourse/machinelearning.html 笔记 http:/ ...
- 斯坦福大学公开课:iOS 7应用开发 笔记
2015-07-06 第一讲 课务.iOS概述 -------------------------------------------------- 开始学习斯坦福大学公开课:iOS 7应用开发留 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议
Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...
- Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)
In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...
- Advice for applying Machine Learning
https://jmetzen.github.io/2015-01-29/ml_advice.html Advice for applying Machine Learning This post i ...
- 斯坦福大学公开课机器学习: machine learning system design | error analysis(误差分析:检验算法是否有高偏差和高方差)
误差分析可以更系统地做出决定.如果你准备研究机器学习的东西或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统.拥有多么复杂的变量,而是构建一个简单的算法.这样你可以很快地实现它.研究机 ...
随机推荐
- Python模拟wc命令(软件测试第二次作业)
Python实现字符,单词,行,代码行,空行及可视化 Gitee项目地址:https://gitee.com/biubiubiuLYQ/word_and_character_statistics 一. ...
- 阿里p3c(代码规范,eclipse插件、模版,idea插件)
阿里p3c 一.说明 代码规范检查插件p3c,是根据<阿里巴巴Java开发手册>转化而成的自动化插件. (高级黑:P-3C“Orion”,反潜巡逻机,阿里大概取p3c先进,监测,发现潜在问 ...
- List接口方法
package cn.zhou.com; /* * List?-------是啥? Collection 的一个子接口! * * 集合?容器? * * 区分容器,每个容器的数据结构不一样! * 集合, ...
- oracle11g安装教程完整版
来自: https://www.2cto.com/database/201701/588135.html 64位WIN7+oracle11g+plsql安装 1.下载Oracle 11g R2 for ...
- 去掉AMD锐龙和Intel Kaby Lake的不支持的硬件的提示
Windows 7和Windows 8.1都不支持AMD Ryzen 锐龙系列和Intel最新的Kaby Lake系列,Windows Update 更新之后总是会提示“不支持的硬件(Unsuppor ...
- Windows Server2008、IIS7启用CA认证及证书制作完整过程
1 添加活动目录证书服务 1.1 打开服务器管理器,右键点击角色,选择“添加角色”,在“添加角色向导”窗口左侧面板选择“服务器角色”,然后勾选“Active Dire ...
- Nginx stream如何获取ssl信息并反向代理至上游服务器
L:116
- Civil 3D 二次开发 事务
事务,一般是指要做的或所做的事情.在计算机术语中是指访问并可能更新数据库中各种数据项的一个程序执行单元(unit). 对于初学者来说,从字面上难以理解什么是事务.下面我试着通过讲述事务的作用及特性来帮 ...
- Spring MVC 使用介绍(二)—— DispatcherServlet
一.Hello World示例 1.引入依赖 <dependency> <groupId>javax.servlet</groupId> <artifactI ...
- 自定义Wed框架
Wed框架本质 我们可以这样理解:所有的Web应用本质上就是一个socket服务端,而用户的浏览器就是一个socket客户端. 这样我们就可以自己实现Web框架了. 半成品自定义wed框架 impor ...