A1122. Hamiltonian Cycle
The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2< N <= 200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format "Vertex1 Vertex2", where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:
n V1 V2 ... Vn
where n is the number of vertices in the list, and Vi's are the vertices on a path.
Output Specification:
For each query, print in a line "YES" if the path does form a Hamiltonian cycle, or "NO" if not.
Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES
NO
NO
NO
YES
NO
#include<cstdio>
#include<iostream>
#include<vector>
using namespace std;
const int INF = ;
int G[][], visit[] = {,};
int main(){
int N, M;
fill(G[], G[] + *, INF);
scanf("%d%d", &N, &M);
for(int i = ; i < M; i++){
int v1, v2;
scanf("%d%d", &v1, &v2);
G[v1][v2] = G[v2][v1] = ;
}
int K;
scanf("%d", &K);
for(int i = ; i < K; i++){
int n, s, vi, vj, tag = ;
fill(visit, visit + , );
scanf("%d%d", &n, &s);
if(n != N + )
tag = ;
visit[s] = ;
vi = s;
for(int j = ; j < n; j++){
scanf("%d", &vj);
if(G[vi][vj] == INF){
tag = ;
}
visit[vj]++;
vi = vj;
}
if(vj != s)
tag = ;
for(int i = ; i <= N; i++){
if(i != s && visit[i] != || i == s && visit[i] != )
tag = ;
}
if(tag == )
printf("NO\n");
else printf("YES\n");
}
return ; }
总结:
1、哈密顿回路:图中所有顶点必须都出现,除了首尾是重复出现外,其它节点仅出现一次。 顶点组成的序列必须是联通的。
2、注意,边读入边做处理时,不要使用break,造成读入数据错乱。
A1122. Hamiltonian Cycle的更多相关文章
- PAT A1122 Hamiltonian Cycle (25 分)——图遍历
The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a gra ...
- PAT甲级——A1122 Hamiltonian Cycle【25】
The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a gra ...
- PAT_A1122#Hamiltonian Cycle
Source: PAT A1122 Hamiltonian Cycle (25 分) Description: The "Hamilton cycle problem" is to ...
- 1122 Hamiltonian Cycle (25 分)
1122 Hamiltonian Cycle (25 分) The "Hamilton cycle problem" is to find a simple cycle that ...
- PAT1122: Hamiltonian Cycle
1122. Hamiltonian Cycle (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The ...
- PAT甲级 1122. Hamiltonian Cycle (25)
1122. Hamiltonian Cycle (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The ...
- hihoCoder-1087 Hamiltonian Cycle (记忆化搜索)
描述 Given a directed graph containing n vertice (numbered from 1 to n) and m edges. Can you tell us h ...
- PAT 1122 Hamiltonian Cycle[比较一般]
1122 Hamiltonian Cycle (25 分) The "Hamilton cycle problem" is to find a simple cycle that ...
- PAT 1122 Hamiltonian Cycle
The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a gra ...
随机推荐
- 你不知道的JavaScript——第一章:作用域是什么?
编译原理 JavaScript事实上是一门编译语言,但与传统的编译语言不同,它不是提前编译的,编译结果也不能在分布式系统中进行移植. 任何JavaScript代码片段在执行前都要进行编译(通常就在执行 ...
- Struts2——通配符,Action Method_DMI
Action wildcard 通配符(配置量降到最低) 使用通配符,就是为了配置简便,但是一定遵守“约定优于配置”原则,约定就是做项目之前最好事先与项目组的人或是自己规定好命名规则. 多个* {1 ...
- python之路--关于线程的一些方法
一 . 线程的两种创建方式 from threading import Thread # 第一种创建方式 def f1(n): print('%s号线程任务'%n) def f2(n): print( ...
- Node & CLI
Node & CLI cli 生成文件的原理是什么 https://nodejs.org/api/cli.html http://nodejs.cn/api/cli.html CLI & ...
- vue表單
使用v-model進行表單雙向數據綁定. 可以根據控件決定數據的類型,可以綁定input.單選.複選.下拉框等 可以使用number和trim等修飾符.
- Ubuntu16.04网络不能访问解决办法
问题: 系统重启后,网络不能正常使用,加载网络配置失败,且重启网络时也提示错误. 解决方法: 在定位的过程中发现是配置中的网络设备号与实际设备号不符. 1.查看网络配置中的配备号: vi /etc ...
- 11.ingress服务
kubernetes 的service服务我们提到过.service 可以用nodePort的方式和调用公有云LBAAS服务 来对于集群外的client提供服务访问,但是service是工作的osi ...
- MailUtils类:用于发送激活邮件
该类用于发送激活邮件 package com.itheima.utils; import java.util.Properties; import javax.mail.Authenticator; ...
- 【嵌入式】Arduino编程基础到应用全解析
Arduino Author: Andrew.Du 基础 基础语法: setup() loop() pinMode(引脚,模式) pinMode(13,OUTPUT):设置13号引脚为输出 //在使用 ...
- Spring04-SpringEL&Spring JDBC数据访问
一. SpringEL入门 Spring动态语言(简称SpEL) 是一个支持运行时查询和操作对象图的强大的动态语言,语法类似于EL表达式,具有诸如显示方法和基本字符串模板函数等特性. 1. 准备工作 ...