回归分析是一个广泛使用的统计工具,用于建立两个变量之间的关系模型。 这些变量之一称为预测变量,其值通过实验收集。 另一个变量称为响应变量,其值来自预测变量。

在线性回归中,这两个变量通过一个等式相关联,其中这两个变量的指数(幂)是1。数学上,当绘制为图形时,线性关系表示直线。任何变量的指数不等于1的非线性关系产生曲线。

线性回归的一般数学方程为 -

y = ax + b
R

以下是使用的参数的描述 -

  • y - 是响应变量。
  • x - 是预测变量。
  • ab - 叫作系数的常数。

建立回归的步骤

一个简单的线性回归例子:是否能根据一个人的已知身高来预测人的体重。要做到这一点,我们需要有一个人的身高和体重之间的关系。

创建线性回归关系的步骤是 -

  • 进行收集高度和相应重量观测值样本的实验。
  • 使用R中的lm()函数创建关系模型。
  • 从所创建的模型中找到系数,并使用这些系数创建数学方程。
  • 获取关系模型的摘要,以了解预测中的平均误差(也称为残差)。
  • 为了预测新人的体重,请使用R中的predict()函数。

输入数据样本

以下是表示观察结果的样本数据 -

# Values of height
x<-151, 174, 138, 186, 128, 136, 179, 163, 152, 131 # Values of weight.
y<-63, 81, 56, 91, 47, 57, 76, 72, 62, 48
R

lm()函数

lm()函数创建预测变量与响应变量之间的关系模型。

语法

线性回归中lm()函数的基本语法是 -

lm(formula,data)
R

以下是使用的参数的描述 -

  • formula - 是表示xy之间的关系的符号。
  • data - 是应用公式的向量。

示例: 创建关系模型并得到系数

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48) # Apply the lm() function.
relation <- lm(y~x) print(relation)

当我们执行上述代码时,会产生以下结果 -

Call:
lm(formula = y ~ x) Coefficients:
(Intercept) x
-38.4551 0.6746

获取关系的概要 -

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48) # Apply the lm() function.
relation <- lm(y~x) print(summary(relation))
R

当我们执行上述代码时,会产生以下结果 -

Call:
lm(formula = y ~ x) Residuals:
Min 1Q Median 3Q Max
-6.3002 -1.6629 0.0412 1.8944 3.9775 Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -38.45509 8.04901 -4.778 0.00139 **
x 0.67461 0.05191 12.997 1.16e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared: 0.9548, Adjusted R-squared: 0.9491
F-statistic: 168.9 on 1 and 8 DF, p-value: 1.164e-06
Shell

predict()函数

语法

线性回归中的predict()的基本语法是 -

predict(object, newdata)
R

以下是使用的参数的描述 -

  • object - 是已经使用lm()函数创建的公式。
  • newdata - 是包含预测变量的新值的向量。

示例: 预测新人的体重

# The predictor vector.
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131) # The resposne vector.
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48) # Apply the lm() function.
relation <- lm(y~x) # Find weight of a person with height 170.
a <- data.frame(x = 170)
result <- predict(relation,a)
print(result)
R

当我们执行上述代码时,会产生以下结果 -

       1
76.22869

示例:以图形方式可视化线性回归,参考以下代码实现 -

# Create the predictor and response variable.
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
relation <- lm(y~x) # Give the chart file a name.
png(file = "linearregression.png") # Plot the chart.
plot(y,x,col = "blue",main = "身高和体重回归",
abline(lm(x~y)),cex = 1.3,pch = 16,xlab = "体重(Kg)",ylab = "身高(cm)") # Save the file.
dev.off()

当我们执行上述代码时,会产生以下结果 -

来源:https://www.yiibai.com/r/r_linear_regression.html

R语言线性回归的更多相关文章

  1. R语言 线性回归

    0 引言 初学者,对于一些运行结果不是很清楚,所以看了一些课本和资料,这里做一个记录而已. 1 线性回归模型的结果分析 结果的解释: “call”:指出线性回归的公式 “Residuals”:之处从实 ...

  2. R语言解读多元线性回归模型

    转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...

  3. R语言解读一元线性回归模型

    转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体 ...

  4. 机器学习(一) 从一个R语言案例学线性回归

    写在前面的话 按照正常的顺序,本文应该先讲一些线性回归的基本概念,比如什么叫线性回归,线性回规的常用解法等.但既然本文名为<从一个R语言案例学会线性回归>,那就更重视如何使用R语言去解决线 ...

  5. 多元线性回归公式推导及R语言实现

    多元线性回归 多元线性回归模型 实际中有很多问题是一个因变量与多个自变量成线性相关,我们可以用一个多元线性回归方程来表示. 为了方便计算,我们将上式写成矩阵形式: Y = XW 假设自变量维度为N W ...

  6. 【数据分析】线性回归与逻辑回归(R语言实现)

    文章来源:公众号-智能化IT系统. 回归模型有多种,一般在数据分析中用的比较常用的有线性回归和逻辑回归.其描述的是一组因变量和自变量之间的关系,通过特定的方程来模拟.这么做的目的也是为了预测,但有时也 ...

  7. 机器学习-线性回归(基于R语言)

    基本概念 利用线性的方法,模拟因变量与一个或多个自变量之间的关系.自变量是模型输入值,因变量是模型基于自变量的输出值. 因变量是自变量线性叠加和的结果. 线性回归模型背后的逻辑——最小二乘法计算线性系 ...

  8. R语言-简单线性回归图-方法

    目标:利用R语言统计描绘50组实验对比结果 第一步:导入.csv文件 X <- read.table("D:abc11.csv",header = TRUE, sep = & ...

  9. 简单线性回归问题的优化(SGD)R语言

    本编博客继续分享简单的机器学习的R语言实现. 今天是关于简单的线性回归方程问题的优化问题 常用方法,我们会考虑随机梯度递降,好处是,我们不需要遍历数据集中的所有元素,这样可以大幅度的减少运算量. 具体 ...

随机推荐

  1. 以太坊 ERC20 与 ERC721 深度解密

    去年11月份的一段时间,Ethereum网络突然变的特别拥堵,原因是兴起了一款以太坊养猫的Dapp游戏,超级可爱的猫形象,再加上配种,繁殖和拍卖等丰富的玩法,风靡了币圈. 一时间币圈大大小小的人都在撸 ...

  2. Call to a member function display() on a non-object问题的解决

    在使用ThinkPHP做项目的时候,出现了如下 的报错: 报错是Call to a member function display() on a non-object.我的代码是: 查看了ThinkP ...

  3. Windows 下自动同步文件夹内容到另一个文件夹下

    实现windows 使用bat脚本文件,复制文件夹到另一个盘,参考如下代码:/y是可以不显示:提示你需要覆盖一个文件,如下图: bat文件内容为 @echo off echo "使用bat脚 ...

  4. 再次理解 C# LINQ

    语言集成查询 (LINQ) 是一系列直接将查询功能集成到 C# 语言的技术统称. 查询表达式(生成表达式) 1.IEnumerable<T> 查询编译为委托.如 source.Where( ...

  5. Java Native Interface(JNI)

    JNI能让Java代码在Java虚拟机里调用其他编程语言(例如C.C++)写的应用或库,且不会影响任何Java虚拟机的实现. 什么时候用JNI? 1.应用程序所需的平台相关功能,标准的Java类库不支 ...

  6. Spring的jdbc模板2:使用开源的连接池

    上篇简要介绍了如何在spring中配置默认的连接池和jdbc模板,这篇来介绍开源的连接池配置与属性引入 C3P0连接池配置: 引入jar包 配置c3p0连接池 <?xml version=&qu ...

  7. win21api、win32gui、win32con三个模块操作系统窗口时一些小技巧

    下面这段脚本是操作一个浏览器上弹窗,打开文件窗口,由于脚本 执行速度快,当时未添加第2行的延时时,脚本顺利的执行成功,但弹的窗却没有进行操作,建议后续如果脚本执行到打开弹窗时,延时个几秒再去操作所弹窗 ...

  8. C#多线程编程のTask(任务全面解析)

    Task是.NET4.0加入的,跟线程池ThreadPool的功能类似,用Task开启新任务时,会从线程池中调用线程,而Thread每次实例化都会创建一个新的线程. 我们可以说Task是一种基于任务的 ...

  9. tensorflow错误:Shape (10, ?) must have rank at least 3

    错误的代码 outputs, _ = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32) 错误原因: 该错误的意思是传入的数据集X的维度只有二维,而tf.nn.d ...

  10. python的格式化输出

    Python的格式化输出有两种: 一.类似于C语言的printf的方法 二.类似于C#的方法