链接:https://codeforces.com/contest/161/problem/D

题意:给一个树,求距离恰好为$k$的点对是多少

题解:对于一个树,距离为$k$的点对要么经过根节点,要么跨过子树的根节点,于是考虑树分治

用类似poj1741的想法,可以推出:

对于任意一棵子树,其根节点记为$C$,其子树中:

记距离$C$距离之和为$k$的点对数量$S_{c}$

记$C$儿子节点$C_1...C_n$的子树中,距离$C_i$距离为$k-2$的点对数量为$S'_{c_i}$

其符合条件的点对数量即为$S_{c}-\sum_1^n S'_{c_i}$

(网上这题,主流的树分治写法好像不是这个...有些看不懂啊....)

树上点分治参考我之前的题解:https://www.cnblogs.com/nervendnig/p/10106333.html

速度还是很可以的

相比dp的话,dp收到$K$大小的限制,如果$K$的大小和N同级别,就很难朴素的DP了,可能就要考虑树上倍增DP(实际上好像不能倍增)

而分治显然并不受限制

具体参见代码:

#include <bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define fi first
#define se second
#define mp make_pair
#define pii pair<int,int>
#define all(x) x.begin(),x.end()
#define IO ios::sync_with_stdio(false)
#define rep(ii,a,b) for(int ii=a;ii<=b;++ii)
#define per(ii,a,b) for(int ii=b;ii>=a;--ii)
#define forn(x,i) for(int i=head[x];i;i=e[i].next)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#define inline inline __attribute__( \
(always_inline, __gnu_inline__, __artificial__)) \
__attribute__((optimize("Ofast"))) __attribute__((target("sse"))) __attribute__((target("sse2"))) __attribute__((target("mmx")))
using namespace std;
#define tpyeinput int
char nc() {static char buf[1000000],*p1=buf,*p2=buf;return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;}
void read(tpyeinput &sum) {register char ch=nc();int flag=1;sum=0;while(ch<'0'||ch>'9') {if(ch=='-') flag=-1;ch=nc();}while(ch>='0'&&ch<='9') sum=(sum<<3)+(sum<<1)+(ch-48),ch=nc();sum*=flag;}
void read(tpyeinput &num1,tpyeinput &num2) {read(num1);read(num2);}
const int maxn=1e5+10,maxm=2e5+10;
const int INF=0x3f3f3f3f;
const int mod=1e9+7;
const double PI=acos(-1.0);
//head
int casn,n,m,k,mid,allnode;
struct node {int to,next;}e[maxm];int head[maxn],nume;
void add(int a,int b){e[++nume]=(node){b,head[a]};head[a]=nume;}
int sz[maxn],maxt,deep[maxn],vis[maxn],cnt;
ll ans;
void getc(int now,int pre){
sz[now]=1;
for(int i=head[now];i;i=e[i].next){
if(e[i].to==pre||vis[e[i].to])continue;
getc(e[i].to,now);
sz[now]+=sz[e[i].to];
}
int tmp=max(sz[now]-1,allnode-sz[now]);
if(maxt>tmp) maxt=tmp,mid=now;
}
void dfs(int now,int pre,int len,int dis){
deep[++cnt]=dis;
if(dis>=len)return;
for(int i=head[now];i;i=e[i].next){
if(e[i].to==pre||vis[e[i].to])continue;
dfs(e[i].to,now,len,dis+1);
}
}
ll cal(int rt,int pre,int len){
if(len<=0) return len==0;
cnt=0;
dfs(rt,pre,len,0);
ll res=0;
int num[507]{};
rep(i,1,cnt) num[deep[i]]++;
rep(i,1,cnt) res+=num[len-deep[i]];
return res;
}
void dc(int rt){
vis[rt]=1;
ans+=cal(rt,0,k);
for(int i=head[rt];i;i=e[i].next){
if(vis[e[i].to]) continue;
ans-=cal(e[i].to,rt,k-2);
allnode=sz[e[i].to],maxt=n;
getc(e[i].to,rt);dc(mid);
}
}
int main() {
//#define test
#ifdef test
auto _start = chrono::high_resolution_clock::now();
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
read(n,k);
int a,b;
rep(i,1,n-1){
read(a,b);
add(a,b);add(b,a);
}
allnode=n;
maxt=INF;
getc(1,0);
dc(mid);
printf("%lld",ans/2);
#ifdef test
auto _end = chrono::high_resolution_clock::now();
cerr << "elapsed time: " << chrono::duration<double, milli>(_end - _start).count() << " ms\n";
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}

  

codeforces 161D Distance in Tree 树上点分治的更多相关文章

  1. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  2. Codeforces 161D Distance in Tree(树型DP)

    题目链接 Distance in Tree $k <= 500$ 这个条件十分重要. 设$f[i][j]$为以$i$为子树,所有后代中相对深度为$j$的结点个数. 状态转移的时候,一个结点的信息 ...

  3. Codeforces 161D Distance in Tree(树的点分治)

    题目大概是,给一棵树,统计距离为k的点对数. 不会DP啊..点分治的思路比较直观,啪啪啪敲完然后AC了.具体来说是这样的: 树上任何两点的路径都可以看成是一条过某棵子树根的路径,即任何一条路径都可以由 ...

  4. Codeforces 161D Distance in Tree

    题目大意:给出一棵n个节点的树,统计树中长度为k的路径的条数(1<=n<=50000 , 1<=k<=500) 思路:树分治! #include<cstdio> # ...

  5. CodeForces 161D Distance in Tree【树形DP】

    <题目链接> 题目大意:一颗无向无环树,有n个顶点,求其中距离为k的点对数是多少,(u,v)与(v,u)为同一点对. #include <cstdio> #include &l ...

  6. POJ 1741 Tree 树上点分治

    题目链接:http://poj.org/problem?id=1741 题意: 给定一棵包含$n$个点的带边权树,求距离小于等于K的点对数量 题解: 显然,枚举所有点的子树可以获得答案,但是朴素发$O ...

  7. CodeForces161D: Distance in Tree(树分治)

    A tree is a connected graph that doesn't contain any cycles. The distance between two vertices of a ...

  8. 【Codeforces 715C】Digit Tree(点分治)

    Description 程序员 ZS 有一棵树,它可以表示为 \(n\) 个顶点的无向连通图,顶点编号从 \(0\) 到 \(n-1\),它们之间有 \(n-1\) 条边.每条边上都有一个非零的数字. ...

  9. CF 161D Distance in Tree 树形DP

    一棵树,边长都是1,问这棵树有多少点对的距离刚好为k 令tree(i)表示以i为根的子树 dp[i][j][1]:在tree(i)中,经过节点i,长度为j,其中一个端点为i的路径的个数dp[i][j] ...

随机推荐

  1. ruby批量插入数据,bulk_insert-----Gem包使用

    文档 https://github.com/jamis/bulk_insert class Book < ActiveRecord::Base end book_attrs = ... # so ...

  2. 前台ajax传参数,后台spring mvc用对象接受

    第二种方法:利用spring mvc的机制,调用对象的get方法,要求对象的属性名和传的参数名字一致(有兴趣的同学看 springmvc源码) 1.将参数名直接写成对象的属性名 $.ajax({ ur ...

  3. NET Core Kestrel部署HTTPS使用SSL证书

    ASP.NET Core配置 Kestrel部署HTTPS.现在大部分网站已经部署HTTPS,大家对于安全越来越重视. 今天简单介绍一下ASP.NET Core 部署HTTPS,直接通过配置Kestr ...

  4. vue-if与vue-show的区别

    两者都是动态显示DOM元素   不同点: 1.使用方式 v-if是根据后面数据的真假,来判断DOM的添加删除等操作 v-show只是在修改元素的css样式(display属性值)   2.实现过程 v ...

  5. Bitcoin Core钱包客户端的区块数据搬家指南

    最近在饭团(微信中的一个服务号)里教一些朋友学习比特币和区块链技术,为了让大家深刻地理解去中心化网络和钱包等概念,我推荐大家一定要安装经典的Bitcoin Core钱包软件,有些朋友在安装的时候没有留 ...

  6. Ext.net GridPanel锁定列需要注意的几个问题

    1.注意需要加LockingGridView <ext:Column DataIndex="Name" Header="姓名" Width="1 ...

  7. hadoop3.x的安装

    请看https://www.cnblogs.com/garfieldcgf/p/8119506.html

  8. Array.apply(null,{length:6}).map()

    map定义和方法 map()方法返回一个新数组,数组中的元素为原始数组元素调用函数处理的后值. map()方法按照原始数组元素顺序依次处理元素. 注意: map不会对空数组进行检测 map不会改变原始 ...

  9. Linux之备份(tar)/解压与压缩(gzip,bzip2,xz)【待完善】

    [本博文,待完善] 以data原始文件为例,同tar备份,用xz压缩,实现备份->压缩整个过程的正向过程(生成.tar.xz)与其逆过程(先解压,后还原备份文件) 1.备份(tar) tar - ...

  10. Kafka思维导图