题解-bzoj3569 DZY Loves Chinese II
Problem
题意概要:给定\(n\)点\(m\)边无向连通图,\(Q\)次询问删除\(k\)条边后是否仍然连通,强制在线
Solution
半年前考到过这类题目(询问删除任意两条边使得图不连通的方案数),当时就整场怼这道题,虽然最后怼出来了但其他题根本没拿分。当时觉得这个解法好新颖,特别兴奋自己想出来了,然后做到这道题才发现这类方法都是套路/(ㄒoㄒ)/~~
有关图的连通基本都是建生成树,如果图不连通了,则只有可能切断了树上的一条边后将所有跨越该树边的非树边全部切断
发现不好维护,于是用到这类题的套路,给每条非树边随机一个权值,将对应的树上路径全部\(xor\)上这个权值,则询问时只要看看存不存在非树边集合使得集合权值异或和等于某条树边,然后套用线性基即可
还是做题做得多,套用之前题目的做法就能很容易想到,不像上次考试那样要现场想算法
Code
#include <bits/stdc++.h>
typedef long long ll;
inline void read(int&x){
char c11=getchar();x=0;while(!isdigit(c11))c11=getchar();
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();
}
const int N=101000,M=1001000,K=50;
const ll lim=1ll<<K;
struct Edge{int v,id,nxt;}a[M];
struct edge{int l,r;ll w;bool tree;}e[M];
int head[N],dep[N],fa[N];
int n,m,_;ll tag[N],d[60];
void dfs(int x,int las){
for(int i=head[x];i;i=a[i].nxt)
if(a[i].v!=las)
if(!dep[a[i].v]){
dep[a[i].v]=dep[x]+1;
fa[a[i].v]=x;
dfs(a[i].v,x);
e[a[i].id].tree=true;
}else if(dep[a[i].v]<dep[x]){
ll rd=(ll)rand()*rand()%lim;
tag[x]^=rd,tag[a[i].v]^=rd;
e[a[i].id].w=rd;
}
}
void tag_up(int x){
for(int i=head[x];i;i=a[i].nxt)
if(dep[a[i].v]==dep[x]+1){
tag_up(a[i].v);
e[a[i].id].w=tag[a[i].v];
tag[x]^=tag[a[i].v];
}
}
int main(){
read(n),read(m);
for(int i=1;i<=m;++i){
read(e[i].l),read(e[i].r);
e[i].tree=false;
a[++_].v=e[i].r,a[_].nxt=head[e[i].l],a[_].id=i,head[e[i].l]=_;
a[++_].v=e[i].l,a[_].nxt=head[e[i].r],a[_].id=i,head[e[i].r]=_;
}
dep[1]=1,dfs(1,0);
tag_up(1);
int Q,k,c[20],xor_val=0;
read(Q);while(Q--){
read(k);
for(int i=1;i<=k;++i){
read(c[i]);c[i]^=xor_val;
if(!e[c[i]].tree){
ll x=e[c[i]].w;
for(int j=K;~j;--j)
if(x&(1<<j))
if(d[j])x^=d[j];
else {d[j]=x;break;}
}
}
bool cut=false;
for(int i=1;i<=k;++i)
if(e[c[i]].tree){
ll x=e[c[i]].w;
for(int j=K;~j;--j)
if(x&(1<<j))x^=d[j];
if(!x){cut=true;break;}
}
puts(cut?"Disconnected":"Connected");
xor_val+=(!cut);
}return 0;
}
题解-bzoj3569 DZY Loves Chinese II的更多相关文章
- [BZOJ3569]DZY Loves Chinese II(随机化+线性基)
3569: DZY Loves Chinese II Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1515 Solved: 569[Submit][S ...
- BZOJ3569 DZY Loves Chinese II(随机化+树上差分+线性基)
上一题的强制在线版.对图跑出一个dfs树,给非树边赋上随机权值,树边的权值为覆盖他的非树边权值的异或.这样如果某条树边和覆盖他的非树边都被割掉(即图不连通),他们的异或值就为0.每次对询问看有没有子集 ...
- BZOJ3569:DZY Loves Chinese II(线性基)
Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图, ...
- bzoj3569 DZY Loves Chinese II & bzoj3237 [AHOI2013] 连通图
给一个无向连通图,多次询问,每次询问给 k 条边,问删除这 k 条边后图的连通性,对于 bzoj3237 可以离线,对于 bzoj3569 强制在线 $n,m,q \leq 500000,k \leq ...
- BZOJ3569: DZY Loves Chinese II(线性基构造)
Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图, ...
- BZOJ3569 : DZY Loves Chinese II
这回是真·强制在线了,首先这道题就是AHOI2013连通图的加强版,那道题k最大只有4 那道题的做法是: 取一个生成树,对每条非树边取一个随机权值, 对每条树边设为“覆盖它的所有非树边”的权值的xor ...
- 【题解】DZY Loves Chinese
[题解]DZY Loves Chinese II 不吐槽这题面了... 考虑如何维护图的连通性,如果把图的变成一颗的\(dfs\)生成树,那么如果把一个节点的父边和他接下来所有的返祖边删除,那么我们就 ...
- 【BZOJ3569】DZY Loves Chinese II
[BZOJ3569]DZY Loves Chinese II 题面 bzoj 题目大意: 给你一张\(N(1\leq N\leq 10^5)\)个点\(M(1\leq M\leq 5\times 10 ...
- 【BZOJ3563/3569】DZY Loves Chinese II 线性基神题
[BZOJ3563/3569]DZY Loves Chinese II Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以 ...
随机推荐
- python 面向对象(三)类与类之间的关系 初始化方法一些类
###################总结################# 面试的时候 让写python一些特殊方法 __init__ 创建对象的时候初始化 __new__对象实例化调用第一个方法 ...
- DotNet 资源大全中文版
https://blog.csdn.net/fhzh520/article/details/52637545 目录 算法与数据结构(Algorithms and Data structures) 应用 ...
- Django之组件--中间件
中间件 中间件是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出.因为改变的是全局,所以需要谨慎实用,用不好会影响到性能 自定义中间 ...
- oldboy s21day02
1.猜数字,设定一个理想数字比如:66,让用户输入数字,如果比66大,则显示猜测的结果大了:如果比66小,则显示猜测的结果小了;只有等于66,显示猜测结果正确,然后退出循环.while 1: num ...
- Linux常用bash命令
目录 bash命令 基础操作 export | whereis | which | clear 文件操作 ls | touch | cat | more | head | tail | mv | cp ...
- maven构建项目时硬编码中文乱码问题解决
场景:1. 项目采用maven作为构建工具.2. 前端页面为jsp,由前端团队独立完成,添加编码配置:<%@ page contentType="text/html;charset=u ...
- 调用waitpid的SIGCHLD信号处理函数
#include <stdio.h> #include <sys/wait.h> void sig_chld(int signo) { pid_t pid; int stat; ...
- [译]C#7 Pattern Matching
原文 public struct Square { public double Side { get; } public Square(double side) { Side = side; } } ...
- Ubuntu中拷贝文件的操作
cp(copy)命令 该命令的功能是将给出的文件或目录拷贝到另一文件或目录中. 语法: cp [选项] 源文件或目录 目标文件或目录 说明:该命令把指定的源文件复制到目标文件或把多个源文件复制到目标目 ...
- Debian Security Advisory(Debian安全报告) DSA-4416-1 wireshark security update
Debian Security Advisory(Debian安全报告) DSA-4416-1 wireshark security update Package:wireshark CVE ID : ...