Problem

bzoj

题意概要:给定\(n\)点\(m\)边无向连通图,\(Q\)次询问删除\(k\)条边后是否仍然连通,强制在线

Solution

半年前考到过这类题目(询问删除任意两条边使得图不连通的方案数),当时就整场怼这道题,虽然最后怼出来了但其他题根本没拿分。当时觉得这个解法好新颖,特别兴奋自己想出来了,然后做到这道题才发现这类方法都是套路/(ㄒoㄒ)/~~

有关图的连通基本都是建生成树,如果图不连通了,则只有可能切断了树上的一条边后将所有跨越该树边的非树边全部切断

发现不好维护,于是用到这类题的套路,给每条非树边随机一个权值,将对应的树上路径全部\(xor\)上这个权值,则询问时只要看看存不存在非树边集合使得集合权值异或和等于某条树边,然后套用线性基即可

还是做题做得多,套用之前题目的做法就能很容易想到,不像上次考试那样要现场想算法

Code

#include <bits/stdc++.h>
typedef long long ll; inline void read(int&x){
char c11=getchar();x=0;while(!isdigit(c11))c11=getchar();
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();
} const int N=101000,M=1001000,K=50;
const ll lim=1ll<<K;
struct Edge{int v,id,nxt;}a[M];
struct edge{int l,r;ll w;bool tree;}e[M];
int head[N],dep[N],fa[N];
int n,m,_;ll tag[N],d[60]; void dfs(int x,int las){
for(int i=head[x];i;i=a[i].nxt)
if(a[i].v!=las)
if(!dep[a[i].v]){
dep[a[i].v]=dep[x]+1;
fa[a[i].v]=x;
dfs(a[i].v,x);
e[a[i].id].tree=true;
}else if(dep[a[i].v]<dep[x]){
ll rd=(ll)rand()*rand()%lim;
tag[x]^=rd,tag[a[i].v]^=rd;
e[a[i].id].w=rd;
}
} void tag_up(int x){
for(int i=head[x];i;i=a[i].nxt)
if(dep[a[i].v]==dep[x]+1){
tag_up(a[i].v);
e[a[i].id].w=tag[a[i].v];
tag[x]^=tag[a[i].v];
}
} int main(){
read(n),read(m);
for(int i=1;i<=m;++i){
read(e[i].l),read(e[i].r);
e[i].tree=false;
a[++_].v=e[i].r,a[_].nxt=head[e[i].l],a[_].id=i,head[e[i].l]=_;
a[++_].v=e[i].l,a[_].nxt=head[e[i].r],a[_].id=i,head[e[i].r]=_;
}
dep[1]=1,dfs(1,0);
tag_up(1); int Q,k,c[20],xor_val=0;
read(Q);while(Q--){
read(k);
for(int i=1;i<=k;++i){
read(c[i]);c[i]^=xor_val;
if(!e[c[i]].tree){
ll x=e[c[i]].w;
for(int j=K;~j;--j)
if(x&(1<<j))
if(d[j])x^=d[j];
else {d[j]=x;break;}
}
}
bool cut=false;
for(int i=1;i<=k;++i)
if(e[c[i]].tree){
ll x=e[c[i]].w;
for(int j=K;~j;--j)
if(x&(1<<j))x^=d[j];
if(!x){cut=true;break;}
}
puts(cut?"Disconnected":"Connected");
xor_val+=(!cut);
}return 0;
}

题解-bzoj3569 DZY Loves Chinese II的更多相关文章

  1. [BZOJ3569]DZY Loves Chinese II(随机化+线性基)

    3569: DZY Loves Chinese II Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1515  Solved: 569[Submit][S ...

  2. BZOJ3569 DZY Loves Chinese II(随机化+树上差分+线性基)

    上一题的强制在线版.对图跑出一个dfs树,给非树边赋上随机权值,树边的权值为覆盖他的非树边权值的异或.这样如果某条树边和覆盖他的非树边都被割掉(即图不连通),他们的异或值就为0.每次对询问看有没有子集 ...

  3. BZOJ3569:DZY Loves Chinese II(线性基)

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生.   今Dzy有一魞歄图, ...

  4. bzoj3569 DZY Loves Chinese II & bzoj3237 [AHOI2013] 连通图

    给一个无向连通图,多次询问,每次询问给 k 条边,问删除这 k 条边后图的连通性,对于 bzoj3237 可以离线,对于 bzoj3569 强制在线 $n,m,q \leq 500000,k \leq ...

  5. BZOJ3569: DZY Loves Chinese II(线性基构造)

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生.   今Dzy有一魞歄图, ...

  6. BZOJ3569 : DZY Loves Chinese II

    这回是真·强制在线了,首先这道题就是AHOI2013连通图的加强版,那道题k最大只有4 那道题的做法是: 取一个生成树,对每条非树边取一个随机权值, 对每条树边设为“覆盖它的所有非树边”的权值的xor ...

  7. 【题解】DZY Loves Chinese

    [题解]DZY Loves Chinese II 不吐槽这题面了... 考虑如何维护图的连通性,如果把图的变成一颗的\(dfs\)生成树,那么如果把一个节点的父边和他接下来所有的返祖边删除,那么我们就 ...

  8. 【BZOJ3569】DZY Loves Chinese II

    [BZOJ3569]DZY Loves Chinese II 题面 bzoj 题目大意: 给你一张\(N(1\leq N\leq 10^5)\)个点\(M(1\leq M\leq 5\times 10 ...

  9. 【BZOJ3563/3569】DZY Loves Chinese II 线性基神题

    [BZOJ3563/3569]DZY Loves Chinese II Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以 ...

随机推荐

  1. python django基础一web框架的本质

    web框架的本质就是一个socket服务端,而浏览器就是一个socker客户端,基于请求做出相应,客户端先请求,服务器做出对应响应 按照http协议的请求发送,服务器按照http协议来相应,这样的通信 ...

  2. 使用git 上传项目到gitee/github

    参考: https://blog.csdn.net/qq944639839/article/details/79864081 注意:在此之前需要设置ssh公匙 详见:Github/github 初始化 ...

  3. js验证登录注册

    js验证登录注册的优势,在前台直接验证,不需要在后台读取返回数据验证,减轻服务器压力. 登陆验证得必要性,拦截恶意脚本的登录注册攻击.哈哈,当然有些高手是可以直接跳过js验证的. 所以还是后台验证,并 ...

  4. Oracle了解(一)

    通常所说的Oracle数据库服务器由一个数据库和至少一个数据库实例组成. 数据库实例是由系统后台进程和分配的内存区域构成 实例你是提供服务的进程,数据库是存放的数据. 数据库是存储数据的文件 数据库实 ...

  5. overlay网络隔离实验失败记录

    按照 https://www.cnblogs.com/CloudMan6/p/7341487.html进行操作,实验结果与老师文章中的正好相反,不同 overlay 网络中的主机可以通信,验证部分见下 ...

  6. 905. Sort Array By Parity

    Description Given an array A of non-negative integers, return an array consisting of all the even el ...

  7. 【转】javascript代码混淆和压缩

    隐藏 JavaScript 源代码?不,你只能混淆和压缩JavaScript源代码 http://www.yaohaixiao.com/tools/confuse-and-compressing-ja ...

  8. 词根 sent/sens

    sense--> to feel (来自于拉丁语 sensus) 词根sent/sens 表示感知 sentiment 感情 consent   consensus  con- 一起, 一起的感 ...

  9. SaltStack 理解

    一.SaltStack 原理: 1.SaltStack 也是基于CS模式的主控master和client被控端 minion 结构:也是一个异构平台基础设置管理工具:遵守Apache2协议,完全开源. ...

  10. 剑指Offer-把数组排成最小的数

    题目描述 输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个.例如输入数组{3,32,321},则打印出这三个数字能排成的最小数字为321323. 思路 可以看 ...