CF 1051F
题意:给定一张n个点,m条边的无向联通图,其中m-n<=20,共q次询问,每次询问求给定两点u,v间的最短路长度
第一眼看见这题的时候,以为有什么神奇的全图最短路算法,满心欢喜的去翻了题解,发现就四个字“树上套环”!
其实这题的提示很明显:m-n<=20!
这说明,如果我们对这个图做一次生成树,那么非树边最多只会有20条!
那么,我们在求任意两点间最短路时,可以分类讨论进行:
①:如果这两点间的最短路只经过树边,那么我们可以直接在树上预处理,利用lca(树上两点距离公式)
②:如果这两点间的最短路会经过非树边,那么由于非树边只有20条,所以产生非树边的点最多只有40个,那这样的话我们可以枚举所有有非树边的点,对全图求最短路,然后在每次询问时枚举每个有非树边的点,每找出一个有非树边的点就去求一遍最短路,最后对找出的所有结果求出最小值即可。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll long long
using namespace std;
struct Edge
{
int next;
int to;
ll val;
}edge[];
bool used[];
int num[];
ll dis[][];
int que[];
struct node
{
int lx,rx;
}e[];
struct tt
{
int p;
ll v;
};
bool operator < (tt a,tt b)
{
return a.v>b.v;
}
int head[];
bool vis[];
int deep[];
int cnt=;
int n,m;
void init()
{
memset(head,-,sizeof(head));
memset(dis,0x3f,sizeof(dis));
cnt=;
}
void add(int l,int r,ll w)
{
edge[cnt].next=head[l];
edge[cnt].to=r;
edge[cnt].val=w;
head[l]=cnt++;
}
ll dep[];
int f[][];
void dfs(int x,int fx)
{
deep[x]=deep[fx]+;
f[x][]=fx;
for(int i=head[x];i!=-;i=edge[i].next)
{
int to=edge[i].to;
if(to==fx)
{
continue;
}
if(f[to][])
{
continue;
}
dep[to]=dep[x]+edge[i].val;
dfs(to,x);
}
}
void getf()
{
for(int i=;i<=;i++)
{
for(int j=;j<=n;j++)
{
f[j][i]=f[f[j][i-]][i-];
}
}
}
inline int read()
{
int f=,x=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void diji(int rt,int typ)
{
memset(vis,,sizeof(vis));
dis[rt][typ]=;
priority_queue <tt> M;
tt s;
s.p=rt;
s.v=;
M.push(s);
while(!M.empty())
{
tt uu=M.top();
M.pop();
int u=uu.p;
if(vis[u])
{
continue;
}
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].next)
{
int to=edge[i].to;
if(vis[to])
{
continue;
}
if(dis[to][typ]>dis[u][typ]+edge[i].val)
{
dis[to][typ]=dis[u][typ]+edge[i].val;
tt temp;
temp.p=to;
temp.v=dis[to][typ];
M.push(temp);
}
}
}
}
int LCA(int x,int y)
{
if(deep[x]>deep[y])
{
swap(x,y);
}
for(int i=;i>=;i--)
{
if(deep[f[y][i]]>=deep[x])
{
y=f[y][i];
}
}
if(x==y)
{
return x;
}
int ret;
for(int i=;i>=;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}else
{
ret=f[x][i];
}
}
return ret;
}
int main()
{
n=read(),m=read();
init();
for(int i=;i<=m;i++)
{
int x=read(),y=read(),z=read();
add(x,y,(ll)z);
add(y,x,(ll)z);
e[i].lx=x;
e[i].rx=y;
}
dfs(,);
getf();
for(int i=;i<=m;i++)
{
if(f[e[i].lx][]!=e[i].rx&&f[e[i].rx][]!=e[i].lx)
{
used[e[i].lx]=;
used[e[i].rx]=;
}
}
int cct=;
for(int i=;i<=n;i++)
{
if(used[i])
{
que[++cct]=i;;
diji(i,cct);
}
}
int q=read();
for(int i=;i<=q;i++)
{
int x=read(),y=read();
int f1=LCA(x,y);
ll ret=dep[x]+dep[y]-*dep[f1];
for(int j=;j<=cct;j++)
{
ret=min(ret,dis[x][j]+dis[y][j]);
}
printf("%lld\n",ret);
}
return ;
}
CF 1051F的更多相关文章
- cf 1051F 树+图
$des$给定一张 $n$ 个点 $m$ 条边的带权无向联通图,$q$ 次询问,每次询问 $u_i$ 到 $v_i$ 的最短路长度.$n,q <= 10^5, m - n <= 20$ $ ...
- Codeforces 1051E Vasya and Big Integers&1051F The Shortest Statement
1051E. Vasya and Big Integers 题意 给出三个大整数\(a,l,r\),定义\(a\)的一种合法的拆分为把\(a\)表示成若干个字符串首位相连,且每个字符串的大小在\(l, ...
- ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'
凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- cf Round 613
A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...
- ARC下OC对象和CF对象之间的桥接(bridge)
在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...
- [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...
- CF memsql Start[c]UP 2.0 A
CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...
- CF memsql Start[c]UP 2.0 B
CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...
随机推荐
- 如何解压RPM包
有时我们需要RPM包中的某个文件,如何解压RPM包呢? RPM包括是使用cpio格式打包的,因此可以先转成cpio然后解压,如下所示: rpm2cpio xxx.rpm | cpio -div 解压了 ...
- yum upgrade和yum update的区别
Linux升级命令有两个分别是yum upgrade和yum update, 这个两个命令是有区别的: yum -y update 升级所有包同时也升级软件.系统版本和系统内核 yum -y upgr ...
- Hadoop Steaming开发之WordCount
简单的WordCount栗子--类似于编程语言中的hello world 1.shell脚本run.sh HADOOP_CMD="/usr/local/src/hadoop-1.2.1/bi ...
- Python学习笔记-转义字符
Python转义字符同C语言的转义字符
- 手写代码注意点--java.lang.Math 相关
1-如果用到了Math的函数,需要手动写上: import java.lang.Math; 2-求x的y次方,用的是Math.pow(x,y); 注意,返回值是double!!! 不是int, 如果需 ...
- 【转】MySQL-Select语句高级应用
[转]MySQL-Select语句高级应用 1.1 SELECT高级应用 1.1.1 前期准备工作 本次测试使用的是world数据库,由mysql官方提供下载地址: https://dev.mysql ...
- Python3-lamba表达式、zip函数
lambda表达式 学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即: # 普通条件语句 == : name = 'wupeiqi' else: name = 'alex' ...
- linux添加swap分区【转】
概述 添加交换分区主要是因为安装oracle时碰到交换分区太小时无法安装的情况,这时候就需要添加交换分区了. 操作简介 增加swap分区方法: 1.新建磁盘分区作为swap分区 2.用文件作为swap ...
- 钉钉消息通知机器人python版
参考官方文档https://open-doc.dingtalk.com/microapp/serverapi2/qf2nxq #coding=utf8 import requests import j ...
- 【转】C++ 11 并发指南一(C++ 11 多线程初探)
引言 C++ 11自2011年发布以来已经快两年了,之前一直没怎么关注,直到最近几个月才看了一些C++ 11的新特性,算是记录一下自己学到的东西吧,和大家共勉. 相信Linux程序员都用过Pthrea ...