用二分法定义平方根函数(Bisection method Square Root Python)
Python里面有内置(Built-in)的平方根函数:sqrt(),可以方便计算正数的平方根。那么,如果要自己定义一个sqrt函数,该怎么解决呢?
解决思路:
1. 大于等于1的正数n的方根,范围肯定在0~n之间;小于1的正数n的方根,范围肯定在0~1之间
2. 用二分法(Bisection method, Binary search)从中间开始找n的方根。
3. 对于大于等于1的正数n,先假设n/2是n的方根,如果n/2的平方大于n,那么说明n的方根在0~n/2之间;如果n/2的平方小于n,说明n的方根在n/2~n之间。以此类推。。
4. 对于小于1的正数n,先假设0.5是n的方根,方法同上
这样做的好处是,每次都可以去掉一半可能的值。因此,搜索的范围越来越小。
I------------------------I-------------------------I
0 n/2 n
举例来说,如果是求8的平方根,那么先假设8的平方根是4;
4的平方是16,16大于8,因此8的平方根范围缩小到0~4之间;
继续假设8的平方根是2,2的平方是4,4小于8,因此8的平方根范围缩小到2~4之间;
继续假设8的平方根是3,3的平方是9,9大于8,因此8的平方根范围缩小到2~3之间;
以此类推。。。
代码如下:
def sqrt_bi(n):
'''为了方便起见,先假设n为正数'''
low=0 #设置下限为0
high=max(n,1) #设置上限为n和1之中的最大数,即:如果n>=1,那么上限为n;如果n<1,那么上限为1
guess=(low+high)/2 #先从中间值开始猜
count=1 #设置猜测次数起始值为1
while abs(guess**2-n)>0.00000000000000000001 and count<100: #当猜测值的平方和n本身的差值无限接近误差值时,循环才会停止;同时设置猜测次数不超过100次
if guess**2<n: #如果猜测值的平方小于n,那么将此设为下限
low=guess
else: #如果猜测值的平方大于n,那么将此设为上限
high=guess
guess=(low+high)/2 #根据新的上下限,重新进行猜测
count+=1 #猜测次数每次增加1
return guess
* 这里,我将0.00000000000000000001设为epsilon(误差值,epsilon为接近0值的浮点数)。epsilon越接近0,算出的方根值就越精确。
调用此函数试一下,同时与python自带的sqrt函数进行对比:
print(sqrt_bi(8))
import math
print(math.sqrt(8))
运行结果如下:
2.82842712474619
2.8284271247461903
python自带的sqrt函数比sqrt_bi函数还要更精确一些。
参考:麻省理工学院公开课:计算机科学及编程导论 (第5课)
用二分法定义平方根函数(Bisection method Square Root Python)的更多相关文章
- 用牛顿-拉弗森法定义平方根函数(Newton-Raphson method Square Root Python)
牛顿法(Newton’s method)又称为牛顿-拉弗森法(Newton-Raphson method),是一种近似求解实数方程式的方法.(注:Joseph Raphson在1690年出版的< ...
- CodeChef - SQRGOOD:Simplify the Square Root (求第N个含平方因子数)
Tiny Wong the chef used to be a mathematics teacher in a senior high school. At that time, he always ...
- Codeforces 715A. Plus and Square Root[数学构造]
A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Project Euler 80:Square root digital expansion 平方根数字展开
Square root digital expansion It is well known that if the square root of a natural number is not an ...
- Codeforces 612E - Square Root of Permutation
E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...
- Plus and Square Root
ZS the Coder is playing a game. There is a number displayed on the screen and there are two buttons, ...
- Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))
C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
- Square Root
Square RootWhen the square root functional configuration is selected, a simplified CORDIC algorithm ...
随机推荐
- python-Selenium库的详解
一.什么是Selenium selenium 是一套完整的web应用程序测试系统,包含了测试的录制(selenium IDE),编写及运行(Selenium Remote Control)和测试的并行 ...
- H5 22-通配符选择器
22-通配符选择器 我是标题 我是段落 我是超链接 --> 我是标题 我是段落 我是超链接 <!DOCTYPE html> <html lang="en"& ...
- Is there a way to avoid undeployment memory leaks in Tomcat?
tomcat 项目部署问题 - yshy - 博客园http://www.cnblogs.com/yshyee/p/3973293.html jsp - tomcat - their classes ...
- JMeter中返回Json数据的处理方法(转)
Json 作为一种数据交换格式在网络开发,特别是 Ajax 与 Restful 架构中应用的越来越广泛.而 Apache 的 JMeter 也是较受欢迎的压力测试工具之一,但是它本身没有提供对于 Js ...
- springboot 整合spark-sql报错
Exception in thread "main" org.spark_project.guava.util.concurrent.ExecutionError: java.la ...
- java lang(Thread) 和 Runable接口
public interface Runnable { public abstract void run(); } public class Thread implements Runnable { ...
- [转帖] 百度知道: KMS 和OSPP
https://zhidao.baidu.com/question/1819332749671662308.html Key Management Service (KMS).目前Windows Se ...
- spring mvc常用注解总结
1.@RequestMapping@RequestMappingRequestMapping是一个用来处理请求地址映射的注解(将请求映射到对应的控制器方法中),可用于类或方法上.用于类上,表示类中的所 ...
- 关于vagrant一个虚拟机搭建多个项目配置(总结)
问题1:执行vagrant status命令,报错,没有找到命令,翻译:“vargrant bash命令没有找到.” 解答:因为在/home目录中,所有无法执行该命令,需要切换到外部进行执行 问题2: ...
- jquery选择基础
1 元素选择器 之前不熟悉的是如: $("input.cls1"); 这种用法 2 属性选择器 包含name属性的input元素, 如 $("input[name]&qu ...