题目描述

  给你你个序列,每次求区间第\(k\)小的数。

  本题中,如果一个数在询问区间中出现了超过\(w\)次,那么就把这个数视为\(n\)。

  强制在线。

  \(n\leq 100000,a_i<n,w\leq n\)

题解

  考虑整体二分。

  先看看离线要怎么做。

  现在我们要计算每个数对每个区间的贡献。

  对于每个询问区间和每种数,让这个区间最右边\(w\)个数对这个询问的贡献为\(1\),第\(w+1\)个数对这个询问的贡献为\(-w\)。

  这样每个数的贡献就是二维平面上的一个矩形。可以用扫描线+线段树解决。

  时间复杂度:\(O(n\log n)\)

  但问题是强制在线。

  可以把这棵线段树可持久化。

  时间复杂度不变。

  总时间复杂度:\(O(n\log^2 n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#include<vector>
#include<utility>
using namespace std;
typedef pair<int,int> pii;
typedef long long ll;
namespace sgt
{
struct node
{
int ls,rs,v;
};
node a[50000010];
int cnt;
int insert(int p1,int l,int r,int v,int L,int R)
{
int p=++cnt;
a[p]=a[p1];
if(l<=L&&r>=R)
{
a[p].v+=v;
return p;
}
int mid=(L+R)>>1;
if(l<=mid)
a[p].ls=insert(a[p].ls,l,r,v,L,mid);
if(r>mid)
a[p].rs=insert(a[p].rs,l,r,v,mid+1,R);
return p;
}
int query(int p,int x,int L,int R)
{
if(L==R)
return a[p].v;
int s=a[p].v;
int mid=(L+R)>>1;
if(x<=mid)
s+=query(a[p].ls,x,L,mid);
else
s+=query(a[p].rs,x,mid+1,R);
return s;
}
}
struct change
{
int x,y1,y2,k,w;
change(){}
change(int a,int c,int d,int e,int f)
{
x=a;
y1=c;
y2=d;
k=e;
w=f;
// printf("%d %d %d %d %d\n",x,y1,y2,k,w);
}
};
int cmp(change a,change b)
{
return a.x>b.x;
}
change c[1000010],c2[1000010];
int cnt;
int n,w,q,type;
int a[100010];
set<int> st[100010];
int rtcnt=0;
int ls[3000010];
int rs[3000010];
int crt;
vector<pii> d[3000010];
int build(int l,int r,int vl,int vr)
{
if(vl==vr)
return 0;
int rr=++rtcnt;
d[rr].push_back(pii());
int now=0;
int i;
int vm=(vl+vr)>>1;
int num=0;
int cnt1=0;
for(i=l;i<=r;i++)
{
if(i!=l&&c[i].x!=c[i-1].x&&num)
{
d[rr].push_back(pii(c[i-1].x,now));
num=0;
}
if(c[i].k<=vm)
{
now=sgt::insert(now,c[i].y1,c[i].y2,c[i].w,1,n);
num++;
cnt1++;
}
}
if(num)
d[rr].push_back(pii(c[r].x,now));
int l1=l,r1=l+cnt1;
for(i=l;i<=r;i++)
if(c[i].k<=vm)
c2[l1++]=c[i];
else
c2[r1++]=c[i];
for(i=l;i<=r;i++)
c[i]=c2[i];
ls[rr]=build(l,l+cnt1-1,vl,vm);
rs[rr]=build(l+cnt1,r,vm+1,vr);
return rr;
}
int get(vector<pii> &s,int x)
{
if(s.size()==1)
return 0;
if(x>s[1].first)
return 0;
int l=1,r=s.size()-1;
while(l<r)
{
int mid=(l+r+1)>>1;
if(x>s[mid].first)
r=mid-1;
else
l=mid;
}
return l;
}
int query(int rr,int l,int r,int k,int vl,int vr)
{
if(vl==vr)
return vl;
int p=get(d[rr],l);
int rt=d[rr][p].second;
int s=sgt::query(rt,r,1,n);
int vm=(vl+vr)>>1;
if(k<=s)
return query(ls[rr],l,r,k,vl,vm);
else
return query(rs[rr],l,r,k-s,vm+1,vr);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d%d%d%d",&n,&w,&q,&type);
int x,i;
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
for(i=n;i>=1;i--)
{
x=a[i];
st[x].insert(i);
int ed2=n;
if(st[x].size()>=w+1)
{
int ed=n;
if(st[x].size()>=w+2)
{
set<int>::iterator p=st[x].end();
p--;
ed=*p-1;
st[x].erase(p);
}
set<int>::iterator p=st[x].end();
p--;
c[++cnt]=change(i,*p,ed,x,-w);
ed2=*p-1;
}
c[++cnt]=change(i,i,ed2,x,1);
}
sort(c+1,c+cnt+1,cmp);
int crt=build(1,cnt,0,n);
int l,r,k;
int last=0;
for(i=1;i<=q;i++)
{
scanf("%d%d%d",&l,&r,&k);
if(type)
{
l^=last;
r^=last;
k^=last;
}
last=query(crt,l,r,k,0,n);
printf("%d\n",last);
}
return 0;
}

【XSY2720】区间第k小 整体二分 可持久化线段树的更多相关文章

  1. POJ2104 K-th Number —— 区间第k小 整体二分

    题目链接:https://vjudge.net/problem/POJ-2104 K-th Number Time Limit: 20000MS   Memory Limit: 65536K Tota ...

  2. 静态区间第k小 - 整体二分

    蒟蒻终于学会整体二分啦! 思路 实现 丑陋无比的代码 #include <bits/stdc++.h> using namespace std; const int N = 200005; ...

  3. [bzoj3065] 带插入区间第k小值 [重量平衡树套线段树]

    题面 传送门 思路 发现强制在线了...... 本来可以树套树解决的问题,现在外层不能使用线段树了,拿什么替代呢? 我们需要一种支持单点插入.下套数据结构.数据结构上传合并复杂度最多单log,不能旋转 ...

  4. 51nod 1175 区间第k大 整体二分

    题意: 一个长度为N的整数序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有数中,第K大的数是多少. 分析: 仅仅就是一道整体二分的入门题而已,没听说过整体二分? 其实就是一个分治的函数 ...

  5. 【BZOJ2653】middle 二分+可持久化线段树

    [BZOJ2653]middle Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个 长度为n的序列s.回答Q个 ...

  6. BZOJ 4556(后缀数组+主席树求前驱后继+二分||后缀数组+二分+可持久化线段树)

    换markdown写了.. 题意: 给你一个1e5的字符串,1e5组询问,求\([l_1,r_1]\)的所有子串与\([l_2,r_2]\)的lcp 思路: 首先可以发现答案是具有单调性的,我们考虑二 ...

  7. 51Nod 1175 区间中第K大的数 (可持久化线段树+离散)

    1175 区间中第K大的数 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题   一个长度为N的整数序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有 ...

  8. 2019.01.14 bzoj5343: [Ctsc2018]混合果汁(整体二分+权值线段树)

    传送门 整体二分好题. 题意简述:nnn种果汁,每种有三个属性:美味度,单位体积价格,购买体积上限. 现在有mmm个询问,每次问能否混合出总体积大于某个值,总价格小于某个值的果汁,如果能,求所有方案中 ...

  9. P5163 WD与地图(整体二分+权值线段树)

    传送门 细节要人命.jpg 这题思路太新奇了--首先不难发现可以倒着做变成加边,但是它还需要我们资瓷加边的同时维护强连通分量.显然加边之后暴力跑是不行的 然后有一个想法,对于一条边\((u,v)\), ...

随机推荐

  1. hybrid App cordova打包webapp PhoneGap

    Hybrid APP基础篇(一)->什么是Hybrid App APP三种开发模式--之--HybridApp解决方案 Hybrid App开发 四大主流平台分析 Hybrid App 开发模式 ...

  2. A-Text Reverse(文本反向读)

    多组数据测试,输入t,表示要测几个,每个语句反向输出. 链接 [https://cn.vjudge.net/contest/235390#problem/A] 解: 就是getchar()和gets( ...

  3. Acceleration for ML 论文导读

    Energy efficient parallel neuromorphic architectures with approximate arithmetic on FPGA Motivation ...

  4. 用C# BigInteger实现的BigDecimal类,终于可以直接做四则运算了。

    https://code.google.com/p/dotnet-big-decimal/ 这是个BigDecimal类的开源项目,支持Operators +, - and *. 俺给改了改,加上了除 ...

  5. iOS使用XZMRefresh实现UITableView或UICollectionView横向刷新

    https://blog.csdn.net/u013285730/article/details/50615551?utm_source=blogxgwz6 XZMRefresh The easies ...

  6. vue router 根据不同的id切换链接界面不刷新

    我们一般使用vue的router时候会根据不同的id来切换界面,但是界面没有立刻刷新.下面我们讲下如何解决这个问题. html: <template> <div id="a ...

  7. Java 获取当前日期的四种方法

    //1 通过Date类来获取当前时间,通过SimpleDateFormat来设置时间格式 SimpleDateFormat dateFormat = new SimpleDateFormat(&quo ...

  8. [FreeBuff]Trojan.Miner.gbq挖矿病毒分析报告

    Trojan.Miner.gbq挖矿病毒分析报告 https://www.freebuf.com/articles/network/196594.html 竟然还有端口转发... 这哥们.. 江民安全 ...

  9. Codeforces 1154G Minimum Possible LCM

    题目链接:http://codeforces.com/problemset/problem/1154/G 题目大意: 给定n个数,在这些数中选2个数,使这两个数的最小公倍数最小,输出这两个数的下标(如 ...

  10. java中间缓存变量机制

    public static void main(String[] args){ int j = 0; for(int i = 0; i < 100; i++) j = j++; System.o ...