Codeforces题号:#300F

出处: Codeforces

主要算法:树状数组/线段树

难度:4.6

思路分析:

在没看到数据范围之前真是喜出望外,直到发现O(n^2)会被卡……

  其实也不是特别难的

  我们要做的事情就是对于每一个节点v,求出当k分别取\(1,2,3,...,n\)时比v的权值小的v的儿子数量。既然要求每个节点的,那n自然是要扫的。那有没有能够在O(log n)复杂度内求出权值小于v的节点数量的方法呢?这自然让我们联想到了O(log n)的数据结构——树状数组或者线段树。

  数组a[i]保存节点的信息。a[i].x表示权值,a[i].idx表示编号(位置)。首先将数组a按照x从小到大进行排序,并在处理好每一个节点后用树状数组更新bit[a[i].idx],让它+1。bit[i]维护的其实就是位置i是否被更新过。那么设想一下,因为a数组是按照权值进行排序的,所以已经被更新过的点的权值一定<=a[i]。因此我们可以查询区间[left,right](表示节点v的子节点的位置的左右位置的最值),得到的答案就是小于节点v权值的子节点的数量。而由于此序列是一定的,无论k怎么变,只需要改变一下left和right就可以得到不同的堆的答案了。所以我们进行如下操作:

  \(ans[k]   +=   Query(right) - Query(left-1);\)

  我想意义已经很清楚了。

  最后有一个复杂度的计算问题:我在外层扫描了节点i,内层扫描了堆的叉数k,又做了bit,为什么复杂度会是\(O(n log n)\)?不应该是\(O(n^2 log n)\)吗?但是总共就n个节点,并且k越大叶子就越多,所以到后来几乎一进循环就会跳出。所以复杂度就等同于\(O(n)\)了

代码注意点:

  排序改成双关键字。因为要先更新父亲,再更新儿子。不然与父亲节点权值相同的儿子会被算为违反的。

Code

/*By QiXingzhi*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int N = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar();
return x * w;
}
struct Number{
int x,idx;
}a[N];
int n,m,left,right;
int bit[N],ans[N];
inline bool comp(Number& a, Number& b){
if(a.x == b.x) return a.idx < b.idx;
return a.x < b.x;
}
inline int GetLeft(int v, int k){
return (k * (v-) + );
}
inline int GetRight(int v, int k){
return ((k * v) + );
}
inline int Query(int x){
int i = x;
int res = ;
while(i > ){
res += bit[i];
i -= i & (-i);
}
return res;
}
inline void Update(int x, int k){
int i = x;
while(i <= N){
bit[i] += k;
i += i & (-i);
}
}
int main(){
n = r;
for(int i = ; i <= n; ++i){
a[i].x = r;
a[i].idx = i;
}
sort(a+,a+n+,comp);
for(int i = ; i <= n; ++i){
for(int k = ; k < n; ++k){
left = GetLeft(a[i].idx,k);
right = GetRight(a[i].idx,k);
if(left > n) break;
if(right > n) right = n;
ans[k] += Query(right) - Query(left-);
}
Update(a[i].idx, );
}
for(int i = ; i < n; ++i){
printf("%d ", ans[i]);
}
return ;
}

Codeforces300 F. A Heap of Heaps的更多相关文章

  1. Codeforces Round #300 F - A Heap of Heaps (树状数组 OR 差分)

    F. A Heap of Heaps time limit per test 3 seconds memory limit per test 512 megabytes input standard ...

  2. Codeforces 538 F. A Heap of Heaps

    \(>Codeforces \space 538 F. A Heap of Heaps<\) 题目大意 :给出 \(n\) 个点,编号为 \(1 - n\) ,每个点有点权,将这些点构建成 ...

  3. [codeforces538F]A Heap of Heaps

    [codeforces538F]A Heap of Heaps 试题描述 Andrew skipped lessons on the subject 'Algorithms and Data Stru ...

  4. L - A Heap of Heaps CodeForces - 538F 主席树

    L - A Heap of Heaps CodeForces - 538F 这个是一个还比较裸的静态主席树. 这个题目的意思是把这个数组变成k叉树,然后问构成的树的子树小于等于它的父节点的对数有多少. ...

  5. Codeforces538F A Heap of Heaps(函数式线段树)

    题意:给你一个数组a[n],对于数组每次建立一个完全k叉树,对于每个节点,如果父节点的值比这个节点的值大,那么就是一个违规点,统计出1~n-1完全叉树下的违规点的各自的个数. 一个直觉的思想就是暴力, ...

  6. CodeForces 538F A Heap of Heaps

    题意 给定一个长度为n的数组A,将它变为一颗k叉树(1 <= k <= n - 1)(堆的形式编号). 问对于每一个k,有多少个节点小于它的父节点. 解题 显然,最初的想法是暴力.因为树的 ...

  7. [CF538F]A Heap of Heaps(主席树)

    题面 题意:给你一个数组a[n],对于数组每次建立一个完全k叉树,对于每个节点,如果父节点的值比这个节点的值大,那么就是一个违规点,统计出1~n-1完全叉树下的违规点的各自的个数. 分析 注意到完全k ...

  8. Codeforces Round #300 解题报告

    呜呜周日的时候手感一直很好 代码一般都是一遍过编译一遍过样例 做CF的时候前三题也都是一遍过Pretest没想着去检查... 期间姐姐提醒说有Announcement也自信不去看 呜呜然后就FST了 ...

  9. CF数据结构练习

    1. CF 438D The Child and Sequence 大意: n元素序列, m个操作: 1,询问区间和. 2,区间对m取模. 3,单点修改 维护最大值, 取模时暴力对所有>m的数取 ...

随机推荐

  1. C#.NET 大型通用信息化系统集成快速开发平台 4.1 版本 - 用户密码安全增强

    系统的用户密码是有多少重要大家应该心里都有数,一个系统的密码若是大批量泄露,哪怕是少数几个人密码泄露了,都是致命的. 1: 系统里不要保存明文密码,那是引诱人家犯罪.2: 首先防范的不是外鬼,先需要防 ...

  2. rest_framework之视图及源码剖析

    最初形态(工作中可能会使用) 引子 Django的CBV我们应该都有所了解及使用,大体概括一下就是通过定义类并在类中定义get post put delete等对应于请求方法的方法,当请求来的时候会自 ...

  3. Nginx监控运维

    Nginx是一个开源.免费.高性能的HTTP和反向代理服务器,也可以用于IMAP/POP3代理服务器.充分利用Nginx的特性,可以有效解决流量高并发请求.cc攻击等问题. 本文探讨了电商场景下Ngi ...

  4. Python学习第十三篇——函数的深层次运用

    def make_pizza(size,*toppings): print("\nmaking a "+str(size)+" size pizza with follo ...

  5. Average Sleep Time CodeForces - 808B (前缀和)

    It's been almost a week since Polycarp couldn't get rid of insomnia. And as you may already know, on ...

  6. 亲测可以永久破解2018版本的pycharm

    pycharm是很强大的开发工具,但是每次注册着实让人头疼.网络上很多注册码.注册服务器等等.但都只是一年或者不能用:为次有如下解决方案.亲测有效!!! 如果想让pycharm永久被激活,比如截止日到 ...

  7. (FZU 2150) Fire Game (bfs)

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=2150 Problem Description Fat brother and Maze are playing ...

  8. hadoop:如何运行自带wordcount

    1.在linux系统创建文件 vi aa.txt   --------i 进行编辑  输入  内容(多个单词例如:aa bb cc aa) 2.在HDFS上面创建文件夹 hdfs dfs -mkdir ...

  9. MySQL 使用左连接替换not in

    众所周知,左连接和右连接的含义是以哪一张表为准. 左连接就是以左表为准,查出的结果中包含左表所有的记录,如果右表中没有与其对应的记录,那么那一行记录中B表部分的内容就全是NULL. 现在有两个表,一个 ...

  10. Prime Permutation

    Prime Permutation 原题地址: http://codeforces.com/problemset/problem/123/A 题目大意: 给你一个字符串(只包含小写字母),从1开始存放 ...