原文链接https://www.cnblogs.com/zhouzhendong/p/9074164.html

题目传送门 - Codeforces 980D

题意

  $\rm Codeforces$ 真是个令人伤心的地方。

  伤心的 $zzd$ 现在给你一个含有 $n$ 个数字元素的数列。

  $zzd$ 问你对于 $1$ 到 $n$ 之间的每一个 $k$ 满足 $Q(序列)=k$ 的原序列的连续子序列个数。

  其中,$Q()$定义如下:

  把当前数列中的数分组,使得同组中任意两个数的乘积为完全平方数。其中最小分组数就是 $Q()$ 的值。

  $n\leq 5000,-10^8\leq a_i\leq 10^8$

题解

  伤心的 $zzd$ 再一次来到了令人伤心的 $\rm Codeforces $ ,再一次的看错题意,并再一次的没有考虑到坑点。

  很容易发现对于一个数,它的平方因子对最后的分组没有影响。

  我们把每一个数都除掉其最大平方因子,然后显然只有相同的数能分到同一组。

  于是离散化一下 $O(n^2)$ 统计即可。

  然后!!

  有一个特殊的数字叫做 "0" !

  $0$可以随便分组。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=10005;
int n,a[N],cnt=0;
int pcnt=0,prime[N],f[N];
map <int,int> mp;
int tot,v[N],ans[N];
void get_prime(int n){
for (int i=1;i<=n;i++)
f[i]=1;
f[1]=0;
for (int i=2;i<=n;i++){
if (!f[i])
continue;
prime[++pcnt]=i*i;
for (int j=i*2;j<=n;j+=i)
f[j]=0;
}
}
int main(){
get_prime(10000);
scanf("%d",&n);
mp.clear();
for (int i=1;i<=n;i++){
scanf("%d",&a[i]);
if (a[i]==0)
continue;
for (int j=1;j<=pcnt;j++)
while (a[i]%prime[j]==0)
a[i]/=prime[j];
if (mp[a[i]]==0)
mp[a[i]]=++cnt;
a[i]=mp[a[i]];
}
for (int i=1;i<=n;i++){
memset(v,0,sizeof v);
tot=0;
for (int j=i;j<=n;j++){
if (a[j])
tot+=v[a[j]]==0;
v[a[j]]++;
ans[max(tot,1)]++;
}
}
for (int i=1;i<=n;i++)
printf("%d ",ans[i]);
return 0;
}

  

Codeforces 980D Perfect Groups 计数的更多相关文章

  1. codeforces 980D Perfect Groups

    题意: 有这样一个问题,给出一个数组,把里面的数字分组,使得每一个组里面的数两两相乘都是完全平方数. 问最少可以分成的组数k是多少. 现在一个人有一个数组,他想知道这个数组的连续子数组中,使得上面的问 ...

  2. CF 980D Perfect Groups(数论)

    CF 980D Perfect Groups(数论) 一个数组a的子序列划分仅当这样是合法的:每个划分中的任意两个数乘积是完全平方数.定义a的权值为a的最小子序列划分个数.现在给出一个数组b,问权值为 ...

  3. Codeforces 980 D. Perfect Groups

    \(>Codeforces\space980 D. Perfect Groups<\) 题目大意 : 设 \(F(S)\) 表示在集合\(S\)中把元素划分成若干组,使得每组内元素两两相乘 ...

  4. Perfect Groups CodeForces - 980D

    链接 题目大意: 定义一个问题: 求集合$S$的最小划分数,使得每个划分内任意两个元素积均为完全平方数. 给定$n$元素序列$a$, 对$a$的所有子区间, 求出上述问题的结果, 最后要求输出所有结果 ...

  5. CodeForces 173E Camping Groups 离线线段树 树状数组

    Camping Groups 题目连接: http://codeforces.com/problemset/problem/173/E Description A club wants to take ...

  6. Codeforces 986D Perfect Encoding FFT 分治 高精度

    原文链接https://www.cnblogs.com/zhouzhendong/p/9161557.html 题目传送门 - Codeforces 986D 题意 给定一个数 $n(n\leq 10 ...

  7. [CodeForces - 919B] Perfect Number

    题目链接:http://codeforces.com/problemset/problem/919/B AC代码: #include<cstdio> using namespace std ...

  8. Codeforces 948D Perfect Security(字典树)

    题目链接:Perfect Security 题意:给出N个数代表密码,再给出N个数代表key.现在要将key组排序,使key组和密码组的亦或所形成的组字典序最小. 题解:要使密码组里面每个数都找到能使 ...

  9. CodeForces 57C Array 组合计数+逆元

    题目链接: http://codeforces.com/problemset/problem/57/C 题意: 给你一个数n,表示有n个数的序列,每个数范围为[1,n],叫你求所有非降和非升序列的个数 ...

随机推荐

  1. CSS集锦

    div内容自动换行:word-wrap:break-word;word-break:break-all;

  2. [PHP]curl上传多文件

    码一下curl上传多文件的行 5.5之前版本的写法 $file = array( 'pic[0]'=>"@E:\\wwwroot\\10003\\temp_56.ini;type=te ...

  3. linux学习之netstat

    netstat -anp netstat -anp -a 表示展示所有 -p 展示进程和名称 -n --numeric don't resolve names

  4. Confluence 6 重构 ancestor 表

    ancestor 表记录了上级和下级(子页面)页面之间的关系.这个表格同时被用来确定子页面是否具有从上级页面继承来的限制(restrictions)权限. 偶尔 ancestor 表格中的数据可能被损 ...

  5. Confluence 6 如何备份和恢复

    如何备份 有关备份你数据库使用的命令与你使用的具体数据库有关,例如针对 PostgreSQL 数据库,备份命令为 pg_dump dbname > outfile. 你应该针对你使用的数据库不同 ...

  6. Confluence 6 升级自定义的站点和空间获得你的自定义布局

    我们建议你在对站点进行布局修改的时候,你需要为你修改的 Confluence 站点或空间布局保留所有的修改记录. 如果没有的话,你应该可以通过下面的办法找到你的自定义修改.这个方法将会把你对全部网站和 ...

  7. LeetCode(109):有序链表转换二叉搜索树

    Medium! 题目描述: 给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: ...

  8. select下拉框使用完毕后,重置按钮使其清空

    需求描述:select下拉框后边有两个按钮,一个查询,一个重置,点击重置,select会清空之前选择的那个查询条件 解决思路:卧槽,这不so easy 么,用那个jQ封装的trigger函数搞定啊,对 ...

  9. Op-level的快速算法

    十岁的小男孩 本文为终端移植的一个小章节. 目录 引言 FFT Conv2d (7x7, 9x9) Winograd Conv2d (3x3, 5x5) 引言 本节针对CNN进行加速计算的,主要有以下 ...

  10. cf219d 基础换根法

    /*树形dp换根法*/ #include<bits/stdc++.h> using namespace std; #define maxn 200005 ]; int root,n,s,t ...