Problem UVA116-Unidirectional TSP

Accept: 7167  Submit: 56893
Time Limit: 3000 mSec

Problem Description

Input

The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by m·n integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file. Foreachspecificationthenumberofrowswillbebetween1and10inclusive; thenumberofcolumns will be between 1 and 100 inclusive. No path’s weight will exceed integer values representable using 30 bits.

 Output

Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weightpath, andthesecondlineisthecostofaminimalpath. Thepathconsistsofasequence of n integers(separatedbyoneormorespaces)representingtherowsthatconstitutetheminimalpath. If there is more than one path of minimal weight the path that is lexicographically smallest should be output. Note: Lexicographically means the natural order on sequences induced by the order on their elements.
 

 Sample Input

5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10
9 10
 

Sample Output

1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19

题解:和数字三角形一样,水题。

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn =  + , maxm =  + ;
const int INF = 0x3f3f3f3f; int n, m;
int val[maxm][maxn], dp[maxm][maxn];
int Next[maxm][maxn]; int read() {
int q = , f = ; char ch = ' ';
while (ch<'' || ch>'') {
if (ch == '-') f = -;
ch = getchar();
}
while ('' <= ch && ch <= '') {
q = q * + ch - '';
ch = getchar();
}
return q * f;
} int main()
{
//freopen("input.txt", "r", stdin);
while (~scanf("%d%d", &m, &n)) {
for (int i = ; i < m; i++) {
for (int j = ; j < n; j++) {
val[i][j] = read();
}
}
//memset(dp, INF, sizeof(dp));
int ans = INF, first = -; for (int j = n - ; j >= ; j--) {
for (int i = ; i < m; i++) {
if (j == n - ) {
dp[i][j] = val[i][j];
}
else {
int row[] = { (i - + m) % m,i,(i + ) % m };
sort(row, row + );
dp[i][j] = INF;
for (int k = ; k < ; k++) {
if (dp[i][j] > dp[row[k]][j + ] + val[i][j]) {
dp[i][j] = dp[row[k]][j + ] + val[i][j];
Next[i][j] = row[k];
}
}
}
if (j == && dp[i][j] < ans) {
ans = dp[i][j];
first = i;
}
}
} printf("%d", first + );
for (int i = Next[first][], j = ; j < n; i = Next[i][j], j++) {
printf(" %d", i + );
}
printf("\n%d\n", ans);
}
return ;
}

UVA116-Unidirectional TSP(动态规划基础)的更多相关文章

  1. Uva116 Unidirectional TSP

    https://odzkskevi.qnssl.com/292ca2c84ab5bd27a2a91d66827dd320?v=1508162936 https://vjudge.net/problem ...

  2. UVa-116 Unidirectional TSP 单向旅行商

    题目 https://vjudge.net/problem/uva-116 分析 设d[i][j]为从(i,j)到最后一列的最小开销,则d[i][j]=a[i][j]+max(d[i+1][j+1], ...

  3. uva 116 - Unidirectional TSP (动态规划)

    第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...

  4. UVA116 Unidirectional TSP 单向TSP

    分阶段的DAG,注意字典序的处理和路径的保存. 定义状态d[i][j]为从i,j 出发到最后一列的最小花费,转移的时候只有三种,向上,向下,或平移. #include<bits/stdc++.h ...

  5. HDU 1619 Unidirectional TSP(单向TSP + 路径打印)

    Unidirectional TSP Problem Description Problems that require minimum paths through some domain appea ...

  6. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  7. nyist oj 79 拦截导弹 (动态规划基础题)

    拦截导弹 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描写叙述 某国为了防御敌国的导弹突击.发展中一种导弹拦截系统.可是这样的导弹拦截系统有一个缺陷:尽管它的第一发炮弹可以 ...

  8. UVA 116 Unidirectional TSP(dp + 数塔问题)

     Unidirectional TSP  Background Problems that require minimum paths through some domain appear in ma ...

  9. Problem C: 动态规划基础题目之数字三角形

    Problem C: 动态规划基础题目之数字三角形 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 208  Solved: 139[Submit][Sta ...

  10. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

随机推荐

  1. 黑客常用 Linux 入侵常用命令

    大学曾误入歧途算是一个脚本小子.... 系统 # uname -a # 查看内核/操作系统/CPU信息 # head -n 1 /etc/issue # 查看操作系统版本 # cat /proc/cp ...

  2. AnnotationConfigBeanDefinitionParser are only available on JDK 1.5 and higher

    報錯: org.springframework.beans.factory.BeanDefinitionStoreException: Unexpected exception parsing XML ...

  3. Java java jdbc thin远程连接并操作Oracle数据库

    JAVA jdbc thin远程连接并操作Oracle数据库 by:授客 QQ:1033553122 测试环境 数据库:linux 下Oracle_11g_R2 编码工具:Eclipse 编码平台:W ...

  4. React之todo-list

    基于React的一个简单Todo-list 先赌为快:在线DEMO,感觉还不错点一下star  -_- ~ 源码地址: 一.已经完成的功能 1.新增选项(默认未完成) 2.完成状态可以切换 3.当前选 ...

  5. ES6中字符串扩展

    ES6中字符串扩展 ① for...of 遍历字符串: 例如: for(let codePoint of 'string'){ console.log(codePoint) } 运行结果: ②  in ...

  6. JavaScript面向对象编程指南(六) 继承

    第6章 继承 6.1 原型链 6.1.1原型链示例 原型链法:Child.prototype=new Parent(); <script> function Shape(){ this.n ...

  7. phpcms中content主要使用的详情列表关系

    从首页(index.html)中点开的内容网页叫单网页(page.html) 从列表(list.html)中点开的网页叫内容页(show.html) 从导航栏的栏目中下拉的列表栏目叫栏目列表页(cat ...

  8. Android为TV端助力 Canvas 和 Paint用法

    自定义view里面的onDraw方法,在这里我们可以绘制各种图形,onDraw里面有两个API我们需要了解清楚他们的用法:Canvas 和 Paint. Canvas翻译成中文就是画布的意思,Canv ...

  9. 四则运算 Java 杨辉鹏,郑冠华

    四则运算 Java 杨辉鹏,郑冠华 GitHub链接:https://github.com/yanghuipeng/arithmetic 项目相关要求 使用 -n 参数控制生成题目的个数,例如 -n ...

  10. ${pageContext.request.contextPath}相关问题总结

    (1)采用绝对路径,但为了解决不同部署方式的差别,在所有非struts标签的路径前加${pageContext.request.contextPath},如原路径为:”/images/title.gi ...