题目描述

好神仙啊,我还真的以为这是个构造题,结果是有唯一解的。

设答案为多项式\(a,a_i\in\{0,1\}\)。

则:

\[f(x)=\Pi (\frac{1}{1-x^i})^{a_i}
\]

两边取对数:

\[\begin{align}
ln(f(x))&=\sum a_i ln(\frac{1}{1-x^i})
\\&=-\sum a_iln(1-x^i)
\end{align}
\]

我们在对\(ln(x)\)在\(x=1\)处进行泰勒展开。

由:

\[\begin{align}
ln(x)&=\sum_{i=0}^{\infty}\frac{ln^{[i]}(x_0)}{i!}(x-x_0)^i\\
&=\sum_{i=1}^{\infty}(-1)^{i-1}\frac{1}{i}(x-1)^i
\end{align}
\]

得到:

\[ln(1-x^j)=\sum_{i=1}^{\infty}(-1)\frac{x^{ij}}{i}
\]

所以:

\[\begin{align}
ln(f(x))&=-\sum a_i \sum_{j=1}^{\infty}(-1)\frac{x^{ij}}{j}
\\&=\sum_{i=1}^n x^i\sum_{j|i}a_j\frac{j}{i}
\\&=\sum_{i=1}^n\frac{x^i}{i}\sum_{j|i}a_jj
\end{align}
\]

求出\(ln(f(x))\)后就可以用\(nlogn\)的复杂度求出\(a\)了。

因为是任意模数,所以要写\(MTT\)。

推导很自然,思路很巧妙啊。关键是要想到列出关于答案数组\(a\)的等式再去将\(a\)解出来。

代码:

#include<bits/stdc++.h>

using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} typedef long long ll;
const int N=(1<<19);
const ll sqr=1<<15;
ll mod;
ll a[N<<2];
struct Com {
double r,v;
Com() {r=0,v=0;}
Com(double a,double b) {r=a,v=b;}
};
Com operator *(const Com &a,const Com &b) {return Com(a.r*b.r-a.v*b.v,a.r*b.v+a.v*b.r);}
Com operator /(const Com &a,const double &y) {return Com(a.r/y,a.v/y);}
Com operator +(const Com &a,const Com &b) {return Com(a.r+b.r,a.v+b.v);}
Com operator -(const Com &a,const Com &b) {return Com(a.r-b.r,a.v-b.v);}
Com w[N<<2];
const double pi=acos(-1);
void FFT(Com *a,int d,int flag) {
static int rev[N<<2];
int n=1<<d;
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<d-1);
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=0;i<n;i++) w[i]=Com(cos(2*flag*i*pi/n),sin(2*flag*i*pi/n));
for(int s=1;s<=d;s++) {
int len=1<<s,mid=len>>1;
for(int i=0;i<n;i+=len) {
for(int j=0;j<mid;j++) {
Com u=a[i+j],v=a[i+j+mid]*w[n/len*j];
a[i+j]=u+v;
a[i+j+mid]=u-v;
}
}
}
if(flag==-1) for(int i=0;i<n;i++) a[i]=a[i]/n;
}
Com f1[N<<2],f2[N<<2],g1[N<<2],g2[N<<2];
Com A[N<<2],B[N<<2],C[N<<2],D[N<<2];
void mul(ll *f,ll *g,int d,ll *ans) {
int n=1<<d;
for(int i=0;i<n;i++) {
f1[i]=Com(f[i]/sqr,0),f2[i]=Com(f[i]%sqr,0);
g1[i]=Com(g[i]/sqr,0),g2[i]=Com(g[i]%sqr,0);
}
for(int i=0;i<n<<1;i++) ans[i]=0;
for(int i=n;i<n<<1;i++) f1[i]=f2[i]=g1[i]=g2[i]=Com(0,0);
FFT(f1,d+1,1),FFT(f2,d+1,1),FFT(g1,d+1,1),FFT(g2,d+1,1);
for(int i=0;i<n<<1;i++) {
A[i]=f1[i]*g1[i];
B[i]=f1[i]*g2[i];
C[i]=f2[i]*g1[i];
D[i]=f2[i]*g2[i];
}
FFT(A,d+1,-1),FFT(B,d+1,-1),FFT(C,d+1,-1),FFT(D,d+1,-1);
for(int i=0;i<n;i++) ans[i]=(ll(A[i].r+0.5)*sqr%mod*sqr%mod+ll(B[i].r+0.5)*sqr+ll(C[i].r+0.5)*sqr+ll(D[i].r+0.5))%mod;
for(int i=n;i<n<<1;i++) ans[i]=0;
}
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
} int n,m;
ll tem[N<<2];
void inverse(ll *a,ll *f,int len) {
if(len==1) {return f[0]=ksm(a[0],mod-2),void();}
int d=ceil(log2(len));
inverse(a,f,len>>1);
mul(a,f,d,tem);
mul(tem,f,d,tem);
for(int i=0;i<len;i++) f[i]=(2*f[i]-tem[i]+mod)%mod;
} ll inv[N<<2];
void Ln(ll *a,ll *ans,int len) {
for(int i=0;i<len-1;i++) ans[i]=a[i+1]*(i+1)%mod;
int d=ceil(log2(len));
inverse(a,inv,len);
ans[len-1]=0;
mul(ans,inv,d,ans);
for(int i=len-1;i;i--) ans[i]=ans[i-1]*ksm(i,mod-2)%mod;
ans[0]=0;
} ll f[N<<2];
int main() {
n=Get(),mod=Get();
for(int i=1;i<=n;i++) a[i]=Get(); a[0]=1;
int d=ceil(log2(n+1));
Ln(a,f,1<<d);
for(int i=1;i<=n;i++) f[i]=f[i]*i%mod;
int tot=0;
for(int i=1;i<=n;i++) {
for(int j=i+i;j<=n;j+=i) {
f[j]=(f[j]-f[i]+mod)%mod;
}
if(f[i]) tot++;
}
cout<<tot<<"\n";
for(int i=1;i<=n;i++) if(f[i]) cout<<i<<" ";
return 0;
}

【SDOI2017】遗忘的集合的更多相关文章

  1. [SDOI2017]遗忘的集合

    [SDOI2017]遗忘的集合 综合了很多套路的题 一看就是完全背包 生成函数! 转化为连乘积形式 Pi....=F 求Ln! 降次才可以解方程 发现方程是: f[i]=∑t|i : bool(t)* ...

  2. [LOJ2271] [SDOI2017] 遗忘的集合

    题目链接 LOJ:https://loj.ac/problem/2271 洛谷:https://www.luogu.org/problemnew/show/P3784 BZOJ太伤身体死活卡不过还是算 ...

  3. 洛谷P3784 [SDOI2017]遗忘的集合(生成函数)

    题面 传送门 题解 生成函数这厮到底还有什么是办不到的-- 首先对于一个数\(i\),如果存在的话可以取无限多次,那么它的生成函数为\[\sum_{j=0}^{\infty}x^{ij}={1\ove ...

  4. [题解] LuoguP3784 [SDOI2017]遗忘的集合

    要mtt的题都是...... 多补了几项就被卡了一整页......果然还是太菜了...... 不说了......来看100分的做法吧...... 如果做过付公主的背包,前面几步应该不难想,所以我们再来 ...

  5. [BZOJ4913][SDOI2017]遗忘的集合

    题解: 首先先弄出$f(x)$的生成函数$$f(x)=\prod_{i=1}^{n} {{(\frac{1}{1-x^i})}}^{a[i]}$$因为$f(x)$已知,我们考虑利用这个式子取推出$a[ ...

  6. P3784 [SDOI2017]遗忘的集合

    非常神仙的一道题! 题意:给出某n个数字跑完全背包m容量的dp数组,求满足要求的字典序最小的n个元素,不知道n是多少. 首先考虑付公主的背包这个题. 对dp数组求一个ln,设它为F. 已知 e^(G1 ...

  7. 洛谷 3784(bzoj 4913) [SDOI2017]遗忘的集合——多项式求ln+MTT

    题目:https://www.luogu.org/problemnew/show/P3784 https://www.lydsy.com/JudgeOnline/problem.php?id=4913 ...

  8. SDOI2017遗忘的集合

    题面链接 咕咕咕 题外话 为了这道题我敲了\(MTT\).多项式求逆.多项式\(ln\)等模板,搞了将近一天. sol 最近懒得写题解啊,随便搞搞吧. 看到这个就是生成函数套上去. \[F(x)=\p ...

  9. BZOJ 4913 [Sdoi2017] 遗忘的集合

    骂了隔壁的 BZOJ垃圾评测机 我他妈卡了两页的常数了 我们机房的电脑跑的都比BZOJ快

随机推荐

  1. 原创SQlServer数据库生成简单的说明文档包含(存储过程、视图、数据库批量备份)小工具(附源码)

    这是一款简单的数据库文档生成工具,主要实现了SQlServer生成说明文档的小工具,目前不够完善,主要可以把数据库的表以及表的详细字段信息,导出到 Word中,可以方便开发人员了解数据库的信息或写技术 ...

  2. [PHP]算法-拼接最小字典序的实现

    拼接最小字典序: 给定一个字符串类型的数组strs,请找到一种拼接顺序,使得将所有字符串拼接起来组成的大字符串是所有可能性中字典顺序最小的并放回这个大字符串. 思路: 1.字典序,12345这五个数, ...

  3. mac 相关命令

    安装 adb (用于调试 app) brew install Caskroom/cask/android-platform-tools 文件夹显示隐藏文件命令 defaults write com.a ...

  4. SQL多表联合查询(交叉连接,内连接,外连接)

    连接查询:     交叉连接:   交叉连接返回的结果是被连接的两个表中所有数据行的笛卡尔积,也就是返回第一个表中符合查询条件的数据航数乘以第二个表中符合,查询条件的数据行数,例如department ...

  5. 谈谈MySQL支持的事务隔离级别,以及悲观锁和乐观锁的原理和应用场景?

    在日常开发中,尤其是业务开发,少不了利用 Java 对数据库进行基本的增删改查等数据操作,这也是 Java 工程师的必备技能之一.做好数据操作,不仅仅需要对 Java 语言相关框架的掌握,更需要对各种 ...

  6. Android Studio 学习(一)

    XML给元素定义ID 定义id android:id="@+id/button_1" 引用id id/id_name 解决Failed to load Appcompat Acti ...

  7. GitHub上fork一个项目贡献代码以及同步原作者的修改【转】

    如何贡献自己的力量 首先你总得有自己的github帐号吧,注册一个,非常简单,只需用户名,邮箱,密码,邮箱只是用来找回密码的,不做验证.因此注册后立即能用!比如我现在新注册一个叫JsLouvre的示范 ...

  8. jQ效果:jQuery之插件开发短信发送倒计时功能

    实现的主要功能如下: 1.点击按钮的时候,可以进行倒计时,倒计时自定义. 2.当接收短信失败后,倒计时停止,可点击重新发送短信. 3.点击的元素支持一般标签和input标签. html代码: < ...

  9. DEM山体阴影原理以及算法具体解释

    山体阴影原理以及算法具体解释 山体阴影基本原理: 山体阴影是假想一个光源在某个方向和某个太阳高度的模拟下.用过临近像元的计算来生成一副0-255的灰度图. 一.山体阴影的主要參数: 1.  太阳光线的 ...

  10. UoW中修改VIM的配色方案

    在WIN10中提供Bash on Ubuntu on Windows,即在win中提供一个Ubuntu子系统,可以使用bash.该系统中自带的VIM的配色方案colorscheme为默认的,不怎么好, ...