mongodb性能分析方法:explain()

为了演示的效果,我们先来创建一个有200万个文档的记录。(我自己的电脑耗了15分钟左右插入完成。如果你想插更多的文档也没问题,只要有耐心等就可以了。)

1 for(var i=0;i<2000000;i++){
2 db.person.insert({"name":"ryan"+i,"age":i});
3 }

MongoDB 3.0之后,explain的返回与使用方法与之前版本有了很大的变化,介于3.0之后的优秀特色和我们目前所使用给的是3.0.7版本,本文仅针对MongoDB 3.0+的explain进行讨论。3.0+的explain有三种模式,分别是:queryPlanner、executionStats、allPlansExecution。现实开发中,常用的是executionStats模式,主要分析这种模式。

给这个person集合创建age键的索引:db.person.createIndex({"age":1})

 db.getCollection('person').find({"age":{"$lte":2000}}).explain("executionStats")

对queryPlanner分析

queryPlanner: queryPlanner的返回

queryPlanner.namespace:该值返回的是该query所查询的表

queryPlanner.indexFilterSet:针对该query是否有indexfilter

queryPlanner.winningPlan:查询优化器针对该query所返回的最优执行计划的详细内容。

queryPlanner.winningPlan.stage:最优执行计划的stage,这里返回是FETCH,可以理解为通过返回的index位置去检索具体的文档(stage有数个模式,将在后文中进行详解)。

queryPlanner.winningPlan.inputStage:用来描述子stage,并且为其父stage提供文档和索引关键字。

queryPlanner.winningPlan.stage的child stage,此处是IXSCAN,表示进行的是index scanning。

queryPlanner.winningPlan.keyPattern:所扫描的index内容,此处是did:1,status:1,modify_time: -1与scid : 1

queryPlanner.winningPlan.indexName:winning plan所选用的index。

queryPlanner.winningPlan.isMultiKey是否是Multikey,此处返回是false,如果索引建立在array上,此处将是true。

queryPlanner.winningPlan.direction:此query的查询顺序,此处是forward,如果用了.sort({modify_time:-1})将显示backward。

queryPlanner.winningPlan.indexBounds:winningplan所扫描的索引范围,如果没有制定范围就是[MaxKey, MinKey],这主要是直接定位到mongodb的chunck中去查找数据,加快数据读取。

queryPlanner.rejectedPlans:其他执行计划(非最优而被查询优化器reject的)的详细返回,其中具体信息与winningPlan的返回中意义相同,故不在此赘述。

对executionStats返回逐层分析

    第一层,executionTimeMillis

最为直观explain返回值是executionTimeMillis值,指的是我们这条语句的执行时间,这个值当然是希望越少越好。

其中有3个executionTimeMillis,分别是:

executionStats.executionTimeMillis

该query的整体查询时间。

executionStats.executionStages.executionTimeMillisEstimate

该查询根据index去检索document获得2001条数据的时间。

executionStats.executionStages.inputStage.executionTimeMillisEstimate

该查询扫描2001行index所用时间。

第二层,index与document扫描数与查询返回条目数

这个主要讨论3个返回项,nReturned、totalKeysExamined、totalDocsExamined,分别代表该条查询返回的条目、索引扫描条目、文档扫描条目。

这些都是直观地影响到executionTimeMillis,我们需要扫描的越少速度越快。

对于一个查询,我们最理想的状态是:

nReturned=totalKeysExamined=totalDocsExamined

第三层,stage状态分析

那么又是什么影响到了totalKeysExamined和totalDocsExamined?是stage的类型。类型列举如下:

COLLSCAN:全表扫描

IXSCAN:索引扫描

FETCH:根据索引去检索指定document

SHARD_MERGE:将各个分片返回数据进行merge

SORT:表明在内存中进行了排序

LIMIT:使用limit限制返回数

SKIP:使用skip进行跳过

IDHACK:针对_id进行查询

SHARDING_FILTER:通过mongos对分片数据进行查询

COUNT:利用db.coll.explain().count()之类进行count运算

COUNTSCAN:count不使用Index进行count时的stage返回

COUNT_SCAN:count使用了Index进行count时的stage返回

SUBPLA:未使用到索引的$or查询的stage返回

TEXT:使用全文索引进行查询时候的stage返回

PROJECTION:限定返回字段时候stage的返回

对于普通查询,我希望看到stage的组合(查询的时候尽可能用上索引):

Fetch+IDHACK

Fetch+ixscan

Limit+(Fetch+ixscan)

PROJECTION+ixscan

SHARDING_FITER+ixscan

COUNT_SCAN

不希望看到包含如下的stage:

COLLSCAN(全表扫描),SORT(使用sort但是无index),不合理的SKIP,SUBPLA(未用到index的$or),COUNTSCAN(不使用index进行count)

mongodb .explain('executionStats') 查询性能分析(转)的更多相关文章

  1. 玩转mongodb(五):mongodb 3.0+ 查询性能分析

    mongodb性能分析方法:explain() 为了演示的效果,我们先来创建一个有200万个文档的记录.(我自己的电脑耗了15分钟左右插入完成.如果你想插更多的文档也没问题,只要有耐心等就可以了.) ...

  2. SQL查询性能分析之(not in)、(and not)、()、(!=)性能比较

    SQL查询性能分析之(not in).(and not).().(!=)性能比较 SQL Server Bruce 3年前 (2013-01-08) 3284浏览 0评论 <:article c ...

  3. mongodb之使用explain和hint性能分析和优化

    当你第一眼看到explain和hint的时候,第一个反应就是mysql中所谓的这两个关键词,确实可以看出,这个就是在mysql中借鉴过来的,既然是借鉴 过来的,我想大家都知道这两个关键字的用处,话不多 ...

  4. [转]Mysql explain用法和性能分析

    本文转自:http://blog.csdn.net/haifu_xu/article/details/16864933  from  @幸福男孩 MySQL中EXPLAIN解释命令是显示mysql如何 ...

  5. SQL查询性能分析

    http://blog.csdn.net/dba_huangzj/article/details/8300784 SQL查询性能的好坏直接影响到整个数据库的价值,对此,必须郑重对待. SQL Serv ...

  6. MongoDB慢查询性能分析

    最近,长期运营后的港台服出现一个问题,web充值很慢,用gm指令查询玩家信息也很慢.最后定位到MongoDB查询也很慢.   刚开始定位的时候,运营SA直接查指定的玩家,并反映很慢,就猜测是索引的问题 ...

  7. [MySQL]--查询性能分析工具-explain关键字

    explain显示了MySQL如何使用索引来处理select语句以及连接表.可以帮助选择更好的索引和写出更优化的查询语句. explain的使用方法很简单,只需要在select查询语句前面加上expl ...

  8. Mysql分页查询性能分析

    [PS:原文手打,转载说明出处,博客园] 前言 看过一堆的百度,最终还是自己做了一次实验,本文基于Mysql5.7.17版本,Mysql引擎为InnoDB,编码为utf8,排序规则为utf8_gene ...

  9. MongoDB 索引 .explain("executionStats")

    MongoDB干货系列2-MongoDB执行计划分析详解(3) http://www.mongoing.com/eshu_explain3 MongoDB之使用explain和hint性能分析和优化 ...

随机推荐

  1. Linux Linux下最大文件描述符设置

    Linux下最大文件描述符设置 by:授客 QQ:1033553122 1.   系统可打开最大文件描述符设置 查看系统可打开最大文件描述符 # cat /proc/sys/fs/file-max 6 ...

  2. Python 常用的正则表达式

    校验数字的相关表达式: 功能 表达式 数字 ^[0-9]*$ n位的数字 ^\d{n}$ 至少n位的数字 ^\d{n,}$ m-n位的数字 ^\d{m,n}$ 零和非零开头的数字 ^(0|[1-9][ ...

  3. Apache Windows下Apache安装步骤

    1.apache官网下载Apache HTTP Server服务器 我相信有些朋友刚用apache服务器时,都希望从官网上下载,而面对着官网上众多的项目和镜像以及目录,也许有点茫然.下面是具体步骤: ...

  4. Struts2.5学习笔记----org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter报错

    Struts2.3升级到struts2.5后报错 <filter> <filter-name>struts2</filter-name> <filter-cl ...

  5. gif软件(ShareX)

    介绍 官网:https://getsharex.com/ 开源,免费的一款软件,录制GIF功能简单,按下快捷键,选取指定的区域即可进行录制,录制完成后的文件默认存放在个人文件夹,整个过程几乎几打断你的 ...

  6. VueJs入门(一)

    VueJs学习笔记:基本概念及简单demo Vue官方介绍:简单小巧的核心,渐进式技术栈,足以应付任何规模的应用. 简单小巧指的是vue.js压缩后仅有17KB,量轻.渐进式指的是我们学习和使用vue ...

  7. Linux学习之路(一)

    导语: 早前为了方便日常开发,建立跟生产环境类型的环境的时候考虑使用docker作为模拟生产环境,结果没想到给自己的学习挖了一个大坑.其他关于docker容器技术的坑先不在这里赘述,有时间的话在其他文 ...

  8. March 06th, 2018 Week 10th Tuesday

    Hope for the best, but prepare for the worst. 抱最好的愿望,做最坏的打算. To hope for the best and prepare for th ...

  9. Pycharm用鼠标滚轮控制字体大小

    一.pycharm字体放大的设置 File —> setting —> Keymap —>在搜寻框中输入:increase —> Increase Font Size(双击) ...

  10. Docker: dockerfile常用关键字

    Dockerfile指令 Dockfile执行和shell命令一行,一行一行执行- 写Dockerfile注意点: 1.           尽量少RUN 2.           多个命令拼接在一起 ...