D. Water Tree
time limit per test

4 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mad scientist Mike has constructed a rooted tree, which consists of n vertices. Each vertex is a reservoir which can be either empty or filled with water.

The vertices of the tree are numbered from 1 to n with the root at vertex 1. For each vertex, the reservoirs of its children are located below the reservoir of this vertex, and the vertex is connected with each of the children by a pipe through which water can flow downwards.

Mike wants to do the following operations with the tree:

  1. Fill vertex v with water. Then v and all its children are filled with water.
  2. Empty vertex v. Then v and all its ancestors are emptied.
  3. Determine whether vertex v is filled with water at the moment.

Initially all vertices of the tree are empty.

Mike has already compiled a full list of operations that he wants to perform in order. Before experimenting with the tree Mike decided to run the list through a simulation. Help Mike determine what results will he get after performing all the operations.

Input

The first line of the input contains an integer n (1 ≤ n ≤ 500000) — the number of vertices in the tree. Each of the following n - 1 lines contains two space-separated numbers aibi (1 ≤ ai, bi ≤ nai ≠ bi) — the edges of the tree.

The next line contains a number q (1 ≤ q ≤ 500000) — the number of operations to perform. Each of the following q lines contains two space-separated numbers ci (1 ≤ ci ≤ 3), vi (1 ≤ vi ≤ n), where ci is the operation type (according to the numbering given in the statement), and vi is the vertex on which the operation is performed.

It is guaranteed that the given graph is a tree.

Output

For each type 3 operation print 1 on a separate line if the vertex is full, and 0 if the vertex is empty. Print the answers to queries in the order in which the queries are given in the input.

Examples
input
5
1 2
5 1
2 3
4 2
12
1 1
2 3
3 1
3 2
3 3
3 4
1 2
2 4
3 1
3 3
3 4
3 5
output
0
0
0
1
0
1
0
1

思路:跟bzoj4034类似;

   传送tp上线;

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=5e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+,mod=; ///数组大小
struct edge
{
int v,next;
} edge[N<<];
int head[N<<],edg,id,n;
/// 树链剖分 int fa[N],dep[N],son[N],siz[N]; // fa父亲,dep深度,son重儿子,siz以该点为子树的节点个数
int ran[N],top[N],tid[N],mx[N]; // tid表示边的标号,top通过重边可以到达最上面的点,ran表示标记tid
void init()
{
memset(son,-,sizeof(son));
memset(head,-,sizeof(head));
edg=;
id=;
} void add(int u,int v)
{
edg++;
edge[edg].v=v;
edge[edg].next=head[u];
head[u]=edg;
} void dfs1(int u,int fath,int deep)
{
fa[u]=fath;
siz[u]=;
dep[u]=deep;
for(int i=head[u]; i!=-; i=edge[i].next)
{
int v=edge[i].v;
if(v==fath)continue;
dfs1(v,u,deep+);
siz[u]+=siz[v];
if(son[u]==-||siz[v]>siz[son[u]])
son[u]=v;
}
} void dfs2(int u,int tp)
{
tid[u]=mx[u]=++id;
top[u]=tp;
ran[tid[u]]=u;
if(son[u]==-)return;
dfs2(son[u],tp),mx[u]=max(mx[u],mx[son[u]]);
for(int i=head[u]; i!=-; i=edge[i].next)
{
int v=edge[i].v;
if(v==fa[u])continue;
if(v!=son[u])
dfs2(v,v),mx[u]=max(mx[u],mx[v]);
}
} struct SGT
{
int sum[N<<],lazy[N<<];
void pushup(int pos)
{
sum[pos]=sum[pos<<]+sum[pos<<|];
}
void pushdown(int pos,int l,int r)
{
if(lazy[pos]!=-)
{
int mid=(l+r)>>;
lazy[pos<<]=lazy[pos];
lazy[pos<<|]=lazy[pos];
sum[pos<<]=lazy[pos]*(mid-l+);
sum[pos<<|]=lazy[pos]*(r-mid);
lazy[pos]=-;
}
}
void build(int l,int r,int pos)
{
lazy[pos]=-;
sum[pos]=;
if(l==r)return;
int mid=(l+r)>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
pushup(pos);
}
void update(int L,int R,int c,int l,int r,int pos)
{
if(L<=l&&r<=R)
{
sum[pos]=c*(r-l+);
lazy[pos]=c;
return;
}
pushdown(pos,l,r);
int mid=(l+r)>>;
if(L<=mid)update(L,R,c,l,mid,pos<<);
if(R>mid) update(L,R,c,mid+,r,pos<<|);
pushup(pos);
}
int query(int p,int l,int r,int pos)
{
if(l==r)return sum[pos];
pushdown(pos,l,r);
int mid=(l+r)>>;
if(p<=mid)return query(p,l,mid,pos<<);
else return query(p,mid+,r,pos<<|);
}
}tree; void up(int l,int r)
{
while(top[l]!=top[r])
{
if(dep[top[l]]<dep[top[r]])swap(l,r);
tree.update(tid[top[l]],tid[l],,,n,);
l=fa[top[l]];
}
if(dep[l]<dep[r])swap(l,r);
tree.update(tid[r],tid[l],,,n,);
} int main()
{
init();
scanf("%d",&n);
for(int i=; i<n; i++)
{
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs1(,-,);
dfs2(,);
tree.build(,n,);
int q;
scanf("%d",&q);
while(q--)
{
int t,x;
scanf("%d%d",&t,&x);
if(t==) tree.update(tid[x],mx[x],,,n,);
else if(t==) up(,x);
else printf("%d\n",tree.query(tid[x],,n,));
}
return ;
}

Codeforces Round #200 (Div. 1) D. Water Tree 树链剖分+线段树的更多相关文章

  1. Codeforces Round #200 (Div. 1)D. Water Tree

    简单的树链剖分+线段树 #include<bits\stdc++.h> using namespace std; #define pb push_back #define lson roo ...

  2. Codeforces Round #200 (Div. 1) D Water Tree 树链剖分 or dfs序

    Water Tree 给出一棵树,有三种操作: 1 x:把以x为子树的节点全部置为1 2 x:把x以及他的所有祖先全部置为0 3 x:询问节点x的值 分析: 昨晚看完题,马上想到直接树链剖分,在记录时 ...

  3. Codeforces Round #200 (Div. 1)D. Water Tree dfs序

    D. Water Tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/343/problem/ ...

  4. 343D/Codeforces Round #200 (Div. 1) D. Water Tree dfs序+数据结构

    D. Water Tree   Mad scientist Mike has constructed a rooted tree, which consists of n vertices. Each ...

  5. Codeforces Round #200 (Div. 1) D. Water Tree(dfs序加线段树)

    思路: dfs序其实是很水的东西.  和树链剖分一样, 都是对树链的hash. 该题做法是:每次对子树全部赋值为1,对一个点赋值为0,查询子树最小值. 该题需要注意的是:当我们对一棵子树全都赋值为1的 ...

  6. Water Tree CodeForces 343D 树链剖分+线段树

    Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...

  7. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

  8. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  9. POJ3237 Tree 树链剖分 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...

随机推荐

  1. kubernetes install for centos

    官方的文档写的很清楚 https://kubernetes.io/docs/getting-started-guides/centos/centos_manual_config/ 如果已经安装过doc ...

  2. Python基础二_操作字符串常用方法、字典、文件读取

    一.字符串常用方法: name.captitalize()                       #字符串首字母大写 name.center(50,'*')                   ...

  3. Python进阶【第一篇】:Python简介

    Python简介 1.Python的由来 Python是著名的“龟叔”Guido van Rossum在1989年圣诞节期间,为了打发无聊的圣诞节而编写的一个编程语言. 2.C 和 Python.Ja ...

  4. ubuntu 构建Xilinx交叉编译环境

    嵌入式系统软硬件协同设计实战指南_基于XILINX ZYNQ_13603826.pdf 202页

  5. SpringAOP单元测试时找不到文件。

    ...applicationContext.xml] cannot be opened because it does not exist. 刚才在进行单元测试时,报这个错,我把它放到了src的某个包 ...

  6. 算法笔记 #007# Backtracking

    留着备用. 题目描述和代码参考:https://www.geeksforgeeks.org/8-queen-problem/ NQueenProblem(js代码): class NQueenProb ...

  7. 一个用python简单的封装了aria2的jsonrpc中adduri的脚本

    aria2是一个十分牛逼的下载神器,有时候项目需要一个很牛逼的下载中间件的话,aria2是一个不错的选择.其中支持jsonrpc和websocket的特性尤其诱人.但是python用起来还是有点不爽, ...

  8. PHP优化加速之Opcache使用总结

    PHP优化加速之Opcache使用总结: Opcache是一种通过将解析的PHP脚本预编译的字节码存放在共享内存中来避免每次加载和解析PHP脚本的开销,解析器可以直接从共享内存读取已经缓存的字节码,从 ...

  9. 用Java实现MVPtree——MVPtree核心算法代码的搭建

    项目需要,需要把MVPtree这种冷门的数据结构写入Java,然网上没有成形的Java实现,虽说C++看惯了不过对C++实现复杂结构也是看得蒙蔽,幸好客户给了个github上job什么的人用Java写 ...

  10. mysql用户的增删与密码丢失问题

    为root用户设置初始密码 mysqladmin -u root password 密码(单实例) mysqladmin -u root password 密码 -S /data/3306/mysql ...