核函数
在svm里,核函数是这样定义的。核函数是一个n*n(样本个数)的矩阵,其中:
$K_{ij}=exp(-\frac{||x^{(i)}-x^{(j)}||^{2}}{2\sigma ^{2}})$

也就是说,当两个向量越接近时,它们的核函数越接近于1;越远时,核函数越接近于0。在svm里,使用$K_{ij}$而不使用$(x^{(i)})^{T}x^{(j)}$,应该是就像神经网络或者逻辑回归里的激活函数吧。反正,以后出现两个样本内积的地方,都换成相应的核函数。那么从3最后求解的式子就变成了:
$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\alpha_{j}k_{ij}-\sum_{i=1}^{n}\alpha_{i}$,使得满足(1)$\alpha_{i}\geq 0,1 \leq i \leq n$,(2)$\sum_{i=1}^{n}\alpha_{i}y^{(i)}=0$

离群点处理

在实际问题中,可能样本点并不是能够完全分成两类(比如有可能有几个正样本在负样本中间,或者相反),那这样岂不是有可能找不到超平面了?为了处理这个问题,我们将求解问题转换一下:$min_{w,b,\xi}$ $\frac{1}{2}||w||^{2}+C\sum_{i=1}^{n}\xi _{i}$,使得$y^{(i)}(w^{T}x^{(i)}+b)\geq 1-\xi _{i} ,1 \leq i \leq n$

那么对应的拉格朗日函数为:$L(w,b,\xi,\alpha,r)=\frac{1}{2}||w||^{2}+C\sum_{i=1}^{n}\xi _{i}-\sum_{i=1}^{n}\alpha_{i}[y^{(i)}(w^{T}x^{(i)}+b)-1+\xi_{i}]-\sum_{i=1}^{n}r_{i}\xi_{i}$

同样的,其对$w,b,\xi$的导数为0,然后化简,最后得到的问题为:
$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\alpha_{j}k_{ij}-\sum_{i=1}^{n}\alpha_{i}$,使得满足(1)$0 \leq \alpha_{i}\leq C,1 \leq i \leq n$,(2)$\sum_{i=1}^{n}\alpha_{i}y^{(i)}=0$

同时有:
(1)$\alpha_{i}=0\Rightarrow y^{(i)}(w^{T}x^{(i)}+b)\geq 1$,正常样本
(2)$\alpha_{i}=C\Rightarrow y^{(i)}(w^{T}x^{(i)}+b)\leq 1$,异常样本,在支持向量之间
(3)$0< \alpha_{i}< C\Rightarrow y^{(i)}(w^{T}x^{(i)}+b)= 1$,支持向量

SVM学习笔记4-核函数和离群点的处理的更多相关文章

  1. SVM学习笔记(一)

    支持向量机即Support Vector Machine,简称SVM.一听这个名字,就有眩晕的感觉.支持(Support).向量(Vector).机器(Machine),这三个毫无关联的词,硬生生地凑 ...

  2. SVM学习笔记

    一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...

  3. SVM学习笔记(一):libsvm参数说明(转)

    LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换--------- ...

  4. SVM学习笔记(二)----手写数字识别

    引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...

  5. DOCKER 学习笔记8 Docker Swarm 集群搭建

    前言 在前面的文章中,已经介绍如何在本地通过Docker Machine 创建虚拟Docker 主机,以及也可以在本地Windows 创建虚拟主机,也是可以使用的.这一节,我们将继续学习 Docker ...

  6. Redis学习笔记(十七) 集群(上)

    Redis集群是Redis提供的分布式数据库方案,集群通过分片来进行数据共享,并提供复制和故障转移操作. 一个Redis集群通常由多个节点组成,在刚开始的时候每个节点都是相互独立的,他们处于一个只包含 ...

  7. Docker Swarm Mode 学习笔记(创建 Swarm 集群)

    Swarm 集群由管理节点与工作节点组成. 初始化集群 使用命令:docker swarm init 如果你的 Docker 主机有多个网卡, 拥有多个 IP 地址, 必须使用 --advertise ...

  8. SVM学习笔记-线性支撑向量机

    对于PLA算法来说,最终得到哪一条线是不一定的,取决于算法scan数据的过程. 从VC bound的角度来说,上述三条线的复杂度是一样的 Eout(w)≤Ein0+Ω(H)dvc= ...

  9. SVM学习笔记5-SMO

    首先拿出最后要求解的问题:$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\a ...

随机推荐

  1. 编写带有下列声明的例程:第一个例程是个驱动程序,它调用第二个例程并显示String str中的字符的所有排列。例如,str是"abc", 那么输出的串则是abc,acb,bac,bca,cab,cba,第二个例程使用递归。

    全排列在笔试面试中很热门,因为它难度适中,既可以考察递归实现,又能进一步考察非递归的实现,便于区分出考生的水平.所以在百度和迅雷的校园招聘以及程序员和软件设计师的考试中都考到了,因此本文对全排列作下总 ...

  2. MySQL.配置MariaDB的字符集

    配置MariaDB的字符集 环境: 操作系统:CentOS Linux release 7.x mariadb安装及配置 yum install mariadb-server mariadb #安装 ...

  3. <2>基本表达式和语句

    1.基本表达式 1: =, +, -, *, /, 赋值,加减剩除; lua 没有 c/c++的缩写表达式 += -= *=, ++, --; 2: () 改变运算的优先级; 3: 字符串对象加法.. ...

  4. 反射--> 解析JSON数据

    方法一 Persons.json文件 [ { "name": "Chris", "age": 18, "city": & ...

  5. Apache+Tomcat+Memcached实现会话保持

    会话保持的三种方式 Session sticky会话绑定:通过在前端调度器的配置中实现统一session发送至同一后发端服务器 Session cluster会话集群:通过配置Tomcat保持所有To ...

  6. linux常用命令:cd 命令

    Linux cd 命令可以说是Linux中最基本的命令语句,其他的命令语句要进行操作,都是建立在使用 cd 命令上的.所以,学习Linux 常用命令,首先就要学好 cd 命令的使用方法技巧. 1. 命 ...

  7. python自定义方法处理日志文件

    从命令行界面拷贝的内容包含过个">>>",函数的作用是用正则把每两个">>>"之间的字符取出来,然后把包含“Tracebac ...

  8. spring boot 概念

    最近新版本迭代,一直在弄框架替换和新技术实现的事儿. 本来想仔细介绍一下Spring Boot的各种东西,后来发现没啥写的,Spring Boot 说白了就是把你开发过程中用到的各种框架给你封装了一下 ...

  9. doc&Alt+/ 快捷键设置&ThreadLocal Fameset与Frame区别

    Alt+/不管用原因:新版本中MyEclipse的Alt+/是别的快捷键,Ctrl+Space是提示标签快捷键,而Ctrl+Space与输入法切换冲突不能用.MyEclipse设置Alt+/快捷键 1 ...

  10. Redis内存分析方法

    一般会采用 bgsave 生成 dump.rdb 文件,再结合 redis-rdb-tools 和 sqlite 来进行静态分析. BGSAVE:在后台异步(Asynchronously)保存当前数据 ...