P4219 [BJOI2014]大融合(LCT)
对于每个询问$(u,v)$所求的是
($u$的虚边子树大小+1)*($v$的虚边子树大小+1)
于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一下就好辣
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
inline void Swap(int &a,int &b){a^=b^=a^=b;}
void read(int &x){
static char c=getchar();x=;
while(c<''||c>'') c=getchar();
while(''<=c&&c<='') x=x*+(c^),c=getchar();
}
#define N 1000005
int n,m,ch[N][],fa[N],s[N],si[N],rev[N];
#define lc ch[x][0]
#define rc ch[x][1]
inline bool nrt(int x){return ch[fa[x]][]==x||ch[fa[x]][]==x;}
inline void up(int x){s[x]=s[lc]+s[rc]+si[x]+;}//算上虚子树的大小
inline void Rev(int x){Swap(lc,rc),rev[x]^=;}
void down(int x){if(rev[x])Rev(lc),Rev(rc),rev[x]=;}
void Pre(int x){if(nrt(x))Pre(fa[x]); down(x);}
void turn(int x){
int y=fa[x],z=fa[y],l=(ch[y][]==x),r=l^;
if(nrt(y)) ch[z][ch[z][]==y]=x;
fa[ch[x][r]]=y; fa[y]=x; fa[x]=z;
ch[y][l]=ch[x][r]; ch[x][r]=y;
up(y); up(x);
}
void splay(int x){
Pre(x);
for(;nrt(x);turn(x)){
int y=fa[x],z=fa[y];
if(nrt(y)) turn(((ch[z][]==y)^(ch[y][]==x))?x:y);
}
}
void access(int x){
for(int y=;x;y=x,x=fa[x])
splay(x),si[x]+=s[rc],rc=y,si[x]-=s[rc],up(x);///原来的rc变成了虚子树
}
inline void makert(int x){access(x),splay(x),Rev(x);}
inline void split(int x,int y){makert(x),access(y),splay(y);}
inline void link(int x,int y){split(x,y),fa[x]=y,si[y]+=s[x];}//x向y连一条虚边,成为y的虚子树
int main(){
read(n);read(m); char opt[]; int q1,q2;
for(int i=;i<=n;++i) s[i]=;
while(m--){
scanf("%s",opt); read(q1);read(q2);
if(opt[]=='Q'){
split(q1,q2),printf("%lld\n",1ll*(si[q1]+)*(si[q2]+));
}else if(opt[]=='A') link(q1,q2);
}return ;
}
P4219 [BJOI2014]大融合(LCT)的更多相关文章
- P4219 [BJOI2014]大融合 LCT维护子树大小
\(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...
- 洛谷 P4219 [BJOI2014]大融合 解题报告
P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...
- [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...
- 洛谷P4219 - [BJOI2014]大融合
Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条 ...
- 洛谷P4219 [BJOI2014]大融合(LCT,Splay)
LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...
- 洛谷P4219 [BJOI2014]大融合(LCT)
LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...
- 【洛谷 P4219】 [BJOI2014]大融合(LCT)
题目链接 维护子树信息向来不是\(LCT\)所擅长的,所以我没搞懂qwq 权当背背模板吧.Flash巨佬的blog里面写了虽然我没看懂. #include <cstdio> #define ...
- 【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量 ...
- Luogu4219 BJOI2014 大融合 LCT
传送门 题意:写一个数据结构,支持图上连边(保证图是森林)和询问一条边两端的连通块大小的乘积.$\text{点数.询问数} \leq 10^5$ 图上连边,$LCT$跑不掉 支持子树$size$有点麻 ...
随机推荐
- centos7 yum 安装mysql5.6
这里用科技大学的mysql yum源官方的源太慢 [root@localhost ~]# rpm -ivh http://mirrors.ustc.edu.cn/mysql-repo/mysql-co ...
- leetcode 93 复原IP地址
IP地址,分成四段,每段是0-255,按照每段的长度分别为1,2,3下一段长度分别1,2,3再下一段......进行递归遍历,能满足条件的假如res中.比较难想到的就是假如有一段是三位的010是不符合 ...
- iOS 新浪微博-3.0 新特性
每个程序在第一次启动的时候,都会显示新特性.效果如下: 思路: 添加一个ViewController,里面放两个View,一个是UISrollView,另一个pageControl 往UISrollV ...
- cocos2d-js 遮挡层(禁止触摸事件传递层)
在游戏中,我们经常会碰到一些弹窗,这些弹窗禁止点透,也就是禁止触摸事件传递到底层,我们称之为遮挡层,这些遮挡层,需要开发遮挡层,我们首先得了解cocos2d-js的触摸传递机制,本文主要针对cocos ...
- HP-UX平台Oracle启动实例遭遇:ORA-27154,ORA-27300,ORA-27301,ORA-27302
环境:HP-UX 11.31 + Oracle 11.2.0.4 现象:在hpux安装Oracle,按业务需求配置参数后,无法启动实例. 报错如下: ORA-27154:post/wait creat ...
- 3.十分钟搞定Vue搭建
Vue推荐开发环境 Node.js 6.2.0.npm 3.8.9.webpack 1.13.vue-cli 2.5.1.webstrom2016 现在开始安装环境 安装nodejs 可以在终端里下载 ...
- vue中解决跨域问题
方法1.后台更改header header('Access-Control-Allow-Origin:*');//允许所有来源访问 header('Access-Control-Allow-Metho ...
- VS2010和选中代码相同的代码的颜色设置,修改高亮颜色
使用Visual Studio 2010, 发现很难看清非活动的选中代码,研究了下,发现以下方法可以设置: 1. 菜单:工具 -> 选项 ->环境 ->字体和颜色 2. 在右边 ...
- 关于hdfs 和hive的数据迁移
1. 迁移hdfs,使用hadoop 命令 hadoop distcp -pugp hdfs://localhost:9000/ hdfs://localhost:9000/ 此处示例仅作说明用 2 ...
- 提示“此Flash Player与您的地区不相容,请重新安装Flash”的解决办法
问题原因: 因为Flash相对于HTML5,有着运算效率低.资源占用大.安全性不高等缺点,随着HTML5越来越普及,Adobe已宣布2020年正式停止支持Flash这项技术. 但Adobe公司为了利益 ...