BSGS算法学习笔记
从这里开始
离散对数和BSGS算法
设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散对数,记为$x = ind_{a}b$。
假如给定$a, b, m$,考虑如何求$x$,或者输出无解,先考虑$(a, m) = 1$的情况。
定理1(欧拉定理) 若$(a, m) = 1$,则$a^{\varphi(m)}\equiv 1 \pmod{m}$。
证明这里就不给出,因为在百度上随便搜一搜就能找到。
不过,这个定理告诉我们,在$(a, m) = 1$的情况下,若存在答案,则答案不会超过$\varphi(m) - 1$。
考虑$a^{x} \equiv b \pmod{m}$,通过一些操作可以得到:
$a^{x - k} \equiv a^{-k}b \pmod{m}$
因此可以选取正整数$c$,将$x$表示为$ic + j$的形式,然后有:
$a^{ic} \equiv a^{-j}b \pmod{m}$
考虑预处理$a^{-j}b$,以它的值为键,最小的$j$为值存入Hash表或者Map中。
这样有什么用呢?你可以快速枚举$a^{ic}$,然后你将这个值在Hash表中查一查对应的最小的$j$,如果查到就可以得到答案了。
Code
/**
* poj
* Problem#2417
* Accepted
* Time: 16ms
* Memory: 1372l
*/
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
typedef bool boolean; int p, x, a; typedef class HashMap {
private:
static const int M = ;
public:
int ce;
int h[M], key[M], val[M], next[M]; HashMap():ce(-) { } void insert(int k, int v) {
int ha = k % M;
for (int i = h[ha]; ~i; i = next[i])
if (key[i] == k) {
val[i] = v;
return;
}
++ce, key[ce] = k, val[ce] = v, next[ce] = h[ha];
h[ha] = ce;
} int operator [] (int k) {
int ha = k % M;
for (int i = h[ha]; ~i; i = next[i])
if (key[i] == k)
return val[i];
return -;
} void clear() {
ce = -;
memset(h, -, sizeof(h));
}
}HashMap; int qpow(int a, int pos) {
int pa = a, rt = ;
for (; pos; pos >>= , pa = pa * 1ll * pa % p)
if (pos & )
rt = rt * 1ll * pa % p;
return rt;
} void exgcd(int a, int b, int& d, int &x, int &y) {
if (!b)
d = a, x = , y = ;
else {
exgcd(b, a % b, d, y, x);
y -= (a / b) * x;
}
} int inv(int a, int n) {
int d, x, y;
exgcd(a, n, d, x, y);
return (x < ) ? (x + n) : (x);
} inline boolean init() {
return ~scanf("%d%d%d", &p, &x, &a);
} int cs;
HashMap mp;
inline int ind() {
mp.clear();
cs = sqrt(p - + 0.5);
if (cs == ) cs++;
int ainv = inv(x, p), iap = a * 1ll * qpow(ainv, cs - ) % p;
for (int i = cs - ; ~i; i--, iap = iap * 1ll * x % p)
mp.insert(iap, i);
int cp = qpow(x, cs), pw = ;
for (int i = ; i < p; i += cs, pw = pw * 1ll * cp % p)
if (~mp[pw])
return mp[pw] + i;
return -;
} inline void solve() {
int res = ind();
if (res == -)
puts("no solution");
else
printf("%d\n", res);
} int main() {
while (init())
solve();
return ;
}
BSGS
扩展BSGS算法
使刚刚的问题更一般,去掉$(a, m) = 1$的条件。
此时逆元不一定存在,所以不能用上述的BSGS算法来做。
考虑去掉它们的公约数$d$。
得到
$a^{x - 1}\cdot\frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}$
在这步中,如果$b \nmid d$,那么显然无解。
否则我可以令$x' = x - 1,k' = \frac{a}{d}, b'=\frac{b}{d}, m' = \frac{m}{d}$进行换元得到:
$k'a^{x'} \equiv b' \pmod{m'}$
如果$(a, m') = 1$,那么直接BSGS解这个方程,然后带回去算原先的$x$,否则可以继续计算$a$和$m'$的最大公约数,继续除掉它,直到$(a, m) = 1$,然后BSGS解方程。
因为最大公约数不为1,每次至少除以2,1和任何数互质,因此总共除的次数不会超过$\log_{2}m$。
但是这么做存在一个问题,假如除的次数为$k$,那么它会忽略大于等于0小于$k$的解,因此,除的时候判一下即可。
Code
/**
* poj
* Problem#3243
* Accepted
* Time: 47ms
* Memory: 1248k
*/
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#ifndef WIN32
#define Auto "%lld"
#else
#define Auto "%I64d"
#endif
using namespace std;
typedef bool boolean; int x, a, m; typedef class HashMap {
private:
static const int M = ;
public:
int ce;
int h[M], key[M], val[M], next[M]; HashMap():ce(-) { } void insert(int k, int v) {
int ha = k % M;
for (int i = h[ha]; ~i; i = next[i])
if (key[i] == k) {
val[i] = v;
return;
}
++ce, key[ce] = k, val[ce] = v, next[ce] = h[ha];
h[ha] = ce;
} int operator [] (int k) {
int ha = k % M;
for (int i = h[ha]; ~i; i = next[i])
if (key[i] == k)
return val[i];
return -;
} void clear() {
ce = -;
memset(h, -, sizeof(h));
}
}HashMap; int qpow(int a, int pos, int m) {
int pa = a, rt = ;
for (; pos; pos >>= , pa = pa * 1ll * pa % m)
if (pos & )
rt = rt * 1ll * pa % m;
return rt;
} int gcd (int a, int b) {
return (b) ? (gcd(b, a % b)) : (a);
} void exgcd(int a, int b, int& d, int &x, int &y) {
if (!b)
d = a, x = , y = ;
else {
exgcd(b, a % b, d, y, x);
y -= (a / b) * x;
}
} int inv(int a, int n) {
int d, x, y;
exgcd(a, n, d, x, y);
return (x < ) ? (x + n) : (x);
} inline boolean init() {
return ~scanf("%d%d%d", &x, &m, &a) && (x || m || a);
} int cs;
HashMap mp;
inline int ind(int pro, int x, int a, int p) {
mp.clear();
cs = sqrt(p - + 0.5);
int ainv = inv(x, p), iap = a * 1ll * qpow(ainv, cs - , p) % p;
for (int i = cs - ; ~i; i--, iap = iap * 1ll * x % p)
mp.insert(iap, i);
int cp = qpow(x, cs, p), pw = pro;
for (int i = ; i < p; i += cs, pw = pw * 1ll * cp % p)
if (~mp[pw])
return mp[pw] + i;
return -;
} int exind(int x, int a, int m) {
if (a == ) return ;
int d, k = , pro = ;
while ((d = gcd(x, m)) != ) {
if (a % d) return -;
if (pro == a) return k;
a /= d, m /= d, pro = (pro * 1ll * (x / d)) % m, k++;
}
int rt = ind(pro, x % m, a, m);
return (~rt) ? (rt + k) : (-);
} inline void solve() {
int res = exind(x % m, a % m, m);
if (res == -)
puts("No Solution");
else
printf("%d\n", res);
} int main() {
while (init())
solve();
return ;
}
ex-BSGS
BSGS算法学习笔记的更多相关文章
- C / C++算法学习笔记(8)-SHELL排序
原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...
- Manacher算法学习笔记 | LeetCode#5
Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的 ...
- Johnson算法学习笔记
\(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快 ...
- 某科学的PID算法学习笔记
最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...
- Johnson 全源最短路径算法学习笔记
Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些 ...
- 算法学习笔记——sort 和 qsort 提供的快速排序
这里存放的是笔者在学习算法和数据结构时相关的学习笔记,记录了笔者通过网络和书籍资料中学习到的知识点和技巧,在供自己学习和反思的同时为有需要的人提供一定的思路和帮助. 从排序开始 基本的排序算法包括冒泡 ...
- R语言实现关联规则与推荐算法(学习笔记)
R语言实现关联规则 笔者前言:以前在网上遇到很多很好的关联规则的案例,最近看到一个更好的,于是便学习一下,写个学习笔记. 1 1 0 0 2 1 1 0 0 3 1 1 0 1 4 0 0 0 0 5 ...
- 二次剩余Cipolla算法学习笔记
对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的 ...
- SPFA算法学习笔记
一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...
随机推荐
- xcode如何支持8.0以下
1. shell打开 open /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSuppor ...
- 关于设置cookie同源,axios请求加上cookie
一个有cookie 一个没有 这是为啥!! axios都设置了的为true允许携带cookie 大佬答疑解惑:==>cookie同源域名才有啊,在Application看看cookie的pat ...
- 用Sample Flex Viewer框架创建GeoWeb应用程序
ArcGIS FlexView 开发指南(中文) 在线预览:https://wenku.baidu.com/view/4c08cc78168884868762d616.html idea : http ...
- Container(容器)与 Injector(注入)
Container(容器): History: containerd于2014年出生于Docker,最初是Docker引擎的低层运行时管理器.继2017年3月被CNCF接受之后,containerd已 ...
- MyBatis基础入门《十九》动态SQL(set,trim)
MyBatis基础入门<十九>动态SQL(set,trim) 描述: 1. 问题 : 更新用户表数据时,若某个参数为null时,会导致更新错误 2. 分析: 正确结果: 若某个参数为nul ...
- c3p0:Connections could not be acquired from the underlying database!解决方案
在利用ssh框架做网站的时候遇到了一个比较棘手的问题,一直连接不上数据库,问题描述如下: 各种百度然后说的最多的解决方案是: 1,驱动配置有误:2,数据库连接地址有误:3,密码或帐号有误: 4,数据库 ...
- leetCodelinked-list-cycle-ii找到链表的环
题目 Given a linked list, return the node where the cycle begins. If there is no cycle, return null. N ...
- Vue系列之 => 使用钩子函数的第二个参数传参
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- html5-hgroup和address元素
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8&qu ...
- hdu5289 单调队列
这题说的是给了 n个数 然后让你计算出所有区间中那些数的最大值减最小值小于k这样的区间有多少个 /* 这样我们给我们在处理过程中的区间做一些处理 我们在处理即将进来的数的时候我们并不知道他是不是我们区 ...