题目传送门

  传送门I

  传送门II

题目大意

  给定一个$n\times m$的网格,每个格子上要么填$1$,要么填$-1$,有$k$个位置上的数是已经填好的,其他位置都是空的。问有多少种填法使得任意一行或一列上的数的乘积为$-1$.

  $1 \leqslant n, m \leqslant 10^{3}$,$1 \leqslant k < \max (n, m)$。

  $k$的范围醒目。那么意味着至少存在一行或者一列为空。

  假设空的是一行。那么剩下的行只需要满足那一行的乘积为$-1$,而空的这一行对应一种唯一的填法。

  可以计算出,空行补数后的乘积为$(-1)^{m}\times (-1)^{n - 1}$,即$(-1)^{m + n - 1}$。

  所以特判$m. n$奇偶性不同的时候无解。然后就可以将每一行单独计算。

  每一行中,要么只填奇数个$-1$,要么只填偶数个$-1$。这样就可以$O(nm)$的时间内解决这道题目。

  但是这不能满足装逼爱好者的欲望。明明这东西可以做到O(n)。

定理1 当$n > 0$时,满足$\sum_{k = 0}^{n}[2 \mid k]C_{n}^{k} = \sum_{k = 0} ^{n}[2 \nmid k]C_{n}^{k} = 2^{n - 1}$。

  证明 当$n$为奇数时,根据式子$C_{n}^{k} = C_{n}^{n - k}$易证。

  当$n$为偶数时,根据杨辉恒等式$C_{n}^{k} = C_{n - 1}^{k - 1} + C_{n - 1}^{k}$可得偶数位的和等于第$n - 1$层的和。

  根据杨辉三角的性质,我们知道第$n - 1$层的和是$2^{n - 1}$,第$n$层的和是$2^{n}$。

  所以第$n$层奇数位的和是$2^{n} - 2^{n - 1} = 2^{n - 1}$。

  因此定理得证。

  然后预处理2的幂,就可以做到$O(n)$了。

  (另外提一句,即使没有 $k$ 那个限制,可以做到 $O(n + k)$)

Code

 /**
* Codeforces
* Problem#40E
* Accepted
* Time: 60ms
* Memory: 2160k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; const int N = ; int n, m, k, p;
boolean aflag;
int pow2[N];
int cnt[N], pro[N]; inline void init() {
scanf("%d%d", &n, &m);
scanf("%d", &k);
if (n < m) swap(n, m), aflag = true;
fill(pro + , pro + n + , );
for (int i = , u, v, x; i <= k; i++) {
scanf("%d%d%d", &u, &v, &x);
if (aflag) swap(u, v);
cnt[u]++, pro[u] *= x;
}
scanf("%d", &p);
} inline void solve() {
if ((n & ) != (m & )) {
puts("");
return;
} pow2[] = ;
for (int i = ; i <= n; i++)
pow2[i] = (pow2[i - ] << ) % p; for (int i = ; i < n; i++)
if (!cnt[i]) {
swap(cnt[i], cnt[n]);
swap(pro[i], pro[n]);
break;
} int ans = ;
for (int i = ; i < n && ans; i++) {
if (cnt[i] == m) {
if (pro[i] == )
ans = ;
} else
ans = ans * 1ll * pow2[m - cnt[i] - ] % p;
}
printf("%d\n", ans);
} int main() {
init();
solve();
return ;
}

Codeforces 40E Number Table - 组合数学的更多相关文章

  1. Codeforces 417E Square Table(随机算法)

    题目链接:Codeforces 417E Square Table 题目大意:给出n和m.要求给出一个矩阵,要求每一列每一行的元素的平方总和是一个平方数. 解题思路:构造.依照 a a a b a a ...

  2. Codeforces 40 E. Number Table

    题目链接:http://codeforces.com/problemset/problem/40/E 妙啊... 因为已经确定的格子数目严格小于了$max(n,m)$,所以至少有一行或者一列是空着的, ...

  3. Codeforces #144 (Div. 1) B. Table (组合数学+dp)

    题目链接: B.Table 题意: \(n*m\)的矩阵使每个\(n*n\)矩阵里面准确包含\(k\)个点,问你有多少种放法. \((1 ≤ n ≤ 100; n ≤ m ≤ 10^{18}; 0 ≤ ...

  4. Codeforces - 466C - Number of Ways - 组合数学

    https://codeforces.com/problemset/problem/466/C 要把数据分为均等的非空的三组,那么每次确定第二个分割点的时候把(除此之外的)第一个分割点的数目加上就可以 ...

  5. CodeForces 1099E - Nice table - [好题]

    题目链接:https://codeforces.com/problemset/problem/1099/E You are given an $n×m$ table, consisting of ch ...

  6. codeforces Hill Number 数位dp

    http://www.codeforces.com/gym/100827/attachments Hill Number Time Limits:  5000 MS   Memory Limits: ...

  7. Codeforces 711D Directed Roads - 组合数学

    ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...

  8. 【CODEFORCES】 C. Table Decorations

    C. Table Decorations time limit per test 1 second memory limit per test 256 megabytes input standard ...

  9. codeforces 651E E. Table Compression(贪心+并查集)

    题目链接: E. Table Compression time limit per test 4 seconds memory limit per test 256 megabytes input s ...

随机推荐

  1. 数据表格控件 DataGridControl

    数据表格控件 书154页 <?xml version="1.0" encoding="utf-8"?> <s:Application xmln ...

  2. spring注解式开发之视图解析器

    http://localhost:8089/springmvc-04-viewResovler/springmvc/hello

  3. Hibernate框架第二天

    ### Hibernate的持久化类 ### ---------- **什么是持久化类** 1. 持久化类:就是一个Java类(咱们编写的JavaBean),这个Java类与表建立了映射关系就可以成为 ...

  4. 注解(Annotation)

    注解(Annotation)很重要,未来的开发模式都是基于注解的,JPA是基于注解的,Spring2.5以上都是基于注解的,Hibernate3.x以后也是基于注解的,现在的Struts2有一部分也是 ...

  5. /*使用PHP创建一个数组,保存5個员工的信息(ename/sex/salary/birthday/pic)*/

    <?php/*使用PHP创建一个数组,保存5個员工的信息(ename/sex/salary/birthday/pic)*/$empList=[    ['ename'=>'张学友','se ...

  6. Oracle表空间管理相关

    以下以我自己的测试环境举例: 1.表空间的 block_size 为 8192字节,即8KBytes.从数据字典中查到 max_size 为 2147483645,即约为15.9TBytes. 2.在 ...

  7. 去掉idea中竖线

    1.现象如下: 2.解决办法. 3.解决后如下:

  8. Eclipse + Pydev问题 : pydev unresolved import

    http://blog.csdn.net/qq_22765745/article/details/71054030http://blog.csdn.net/amghost/article/detail ...

  9. [博客迁移]探索Windows Azure 监控和自动伸缩系列3 - 启用Azure监控扩展收集自定义监控数据

    上一篇我们介绍了获取Azure的监控指标和监控数据: http://www.cnblogs.com/teld/p/5113376.html 本篇我们继续:监控虚拟机的自定义性能计数器. 随着我们应用规 ...

  10. 集合List

    //数组 存值长度固定,类型固定 //集合 长度不固定,类型也可以不固定 List<int> list = new List<int>(); //list.Add(78); ; ...