tensorflow 笔记10:tf.nn.sparse_softmax_cross_entropy_with_logits 函数
函数:tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None,labels=None,logits=None,name=None)
#如果遇到这个问题:Rank mismatch: Rank of labels (received 2) should equal rank of logits minus 1 (received 2). 一般是维度没有计算好;
函数是将softmax和cross_entropy放在一起计算,对于分类问题而言,最后一般都是一个单层全连接神经网络,比如softmax分类器居多,对这个函数而言,tensorflow神经网络中是没有softmax层,而是在这个函数中进行softmax函数的计算。
这里的logits通常是最后的全连接层的输出结果,labels是具体哪一类的标签,这个函数是直接使用标签数据的,而不是采用one-hot编码形式。
Args:
_sentinel: Used to prevent positional parameters. Internal, do not use.
labels: Tensor of shape [d_0, d_1, ..., d_{r-1}] (where r is rank of labels and result) and dtype int32 or int64. Each entry in labels must be an index in [0, num_classes).
Other values will raise an exception when this op is run on CPU, and return NaN for corresponding loss and gradient rows on GPU.
logits: Unscaled log probabilities of shape [d_0, d_1, ..., d_{r-1}, num_classes] and dtype float32 or float64.
name: A name for the operation (optional).
Returns:
A Tensor of the same shape as labels and of the same type as logits with the softmax cross entropy loss. Raises:
ValueError: If logits are scalars (need to have rank >= 1) or if the rank of the labels is not equal to the rank of the logits minus one.
用法:
labele:表示的训练数据的label信息
logits :表示的是模型计算出来的结果
如下例所示: batch_size = 5,num_class = 5,分为五类;
label 的shape为([batch_size,1]) #直接是分类后的结果,比如分五类,那么 就是[[3],[4]] logits 的shape为([batch_size,num_classes]) #softmax计算后的概率分布,对比上面,[[0.1,0.2,0.2,0.1,0.4],[0.1,0.1,0.1,0.1,0.6]]
以下是计算方法:

tensorflow 笔记10:tf.nn.sparse_softmax_cross_entropy_with_logits 函数的更多相关文章
- Tensorflow BatchNormalization详解:4_使用tf.nn.batch_normalization函数实现Batch Normalization操作
使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearnin ...
- 【TensorFlow】tf.nn.embedding_lookup函数的用法
tf.nn.embedding_lookup函数的用法主要是选取一个张量里面索引对应的元素.tf.nn.embedding_lookup(tensor, id):tensor就是输入张量,id就是张量 ...
- tf.nn.embedding_lookup函数的用法
关于np.random.RandomState.np.random.rand.np.random.random.np.random_sample参考https://blog.csdn.net/lanc ...
- APUE学习笔记——10.9 信号发送函数kill、 raise、alarm、pause
转载注明出处:Windeal学习笔记 kil和raise kill()用来向进程或进程组发送信号 raise()用来向自身进程发送信号. #include <signal.h> int k ...
- 小记tensorflow-1:tf.nn.conv2d 函数介绍
tf.nn.conv2d函数介绍 Input: 输入的input必须为一个4d tensor,而且每个input的格式必须为float32 或者float64. Input=[batchsize,im ...
- 对 tensorflow 中 tf.nn.embedding_lookup 函数的解释
http://stackoverflow.com/questions/34870614/what-does-tf-nn-embedding-lookup-function-do embedding_l ...
- tensorflow笔记:使用tf来实现word2vec
(一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔 ...
- 【TensorFlow】理解tf.nn.conv2d方法 ( 附代码详解注释 )
最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解.google了一下,参考了网上一些朋友写得博 ...
- tf.nn.embedding_lookup函数
tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True, max_ ...
随机推荐
- Rstudio+mysql写入中文表
1.在mysql中输入sql语句,新建一个支持中文的数据库 create database Chinadaydata DEFAULT CHARACTER SET gbk COLLATE gbk_chi ...
- [OpenCV-Python] OpenCV 中图像特征提取与描述 部分 V (一)
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相 ...
- [OpenCV-Python] OpenCV 中图像特征提取与描述 部分 V (二)
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 34 角点检测的 FAST 算法 目标 • 理解 FAST 算法的基础 • 使用 OpenCV 中的 FAST 算法相关函 ...
- Linux学习之用户配置文件详解(十四)
Linux学习之用户配置文件详解 目录 用户信息文件/etc/password 影子文件/etc/shadow 组信息文件/etc/group 组密码文件/etc/gshadow 用户信息文件/etc ...
- Nodejs学习之mongodb Error: failed to connect to [localhost:27017]
在连接mongodb时出现以下错误提示信息 events.js: throw er; // Unhandled 'error' event ^ Error: failed to connect to ...
- [NOI导刊2010提高]黑匣子
OJ题号:洛谷1801 思路:建立一个大根堆.一个小根堆.大根堆维护前i小的元素,小根堆维护当前剩下的元素. #include<cstdio> #include<queue> ...
- GC日志
JVM的GC日志的主要参数包括如下几个: -XX:+PrintGC 输出GC日志 -XX:+PrintGCDetails 输出GC的详细日志 -XX:+PrintGCTimeStamps 输出GC的时 ...
- float类型数保留一位小数
float类型数保留一位小数 float a = 2.5f; float b = 1.2f; System.out.println(a/b); System.out.println((float)(M ...
- C# 调用windows api 操作鼠标、键盘、窗体合集...更新中
鼠标操作window窗体合集...更新中 1.根据句柄查找窗体 引自http://www.2cto.com/kf/201410/343342.html 使用SPY++工具获取窗体 首先打开spy+ ...
- 预编译头文件来自编译器的早期版本,或者预编译头为 C++ 而在 C 中使用它(或相反)(转)
用VC++ 2008 编写C语言程序,编译出现错误: 预编译头文件来自编译器的早期版本,或者预编译头为 C++ 而在 C 中使用它(或相反) 解决方法: 建工程时 建立空项目 或者在项目设置里关闭预编 ...