IDA*(以The Ratotion Game POJ--2286 UVa1343为例)
IDA*算法实质就是迭代加深搜索和A*算法的结合,通过迭代加深搜索来寻找答案,借由预估函数h()来进行估计与剪枝。
本题主框架如下:
else for(int maxd=;;maxd++)
{
if(dfs(,maxd)) break;
}
由1开始不断加深最大深度,如果当前深度+需要到达目标的步数>最大深度时,则剪枝,需要达到目标的步数可以用函数h()表示,其返回值和计算方法由具体问题确定,本题中则是中间8个格子中最少的不同数字量。
具体代码如下:
///输入数字对应的位置
/*
00 01
02 03
04 05 06 07 08 09 10
11 12
13 14 15 16 17 18 19
20 21
22 23
*/
#include<cstdio>
#include<algorithm>
using namespace std; const int rev[] = {, , , , , , , };///每个行对应的逆行
const int center[]={,,,,,,,};
int a[];///输入
///每行对应的数字在数组a中的下标
int line[][]=
{
{ , , ,,,,}, // A
{ , , ,,,,}, // B
{, , , , , , }, // C
{,,,,,,}, // D
};
char ans[];///答案数组,存储所走步数 bool is_final()///判断是否达到题目符合条件
{
for(int i=;i<;i++)
if(a[center[i]]!=a[center[]]) return false;
return true;
} int diff(int target)///查找不同数字的数量
{
int ans=;
for(int i = ; i < ; i++)
if(a[center[i]] != target) ans++;
return ans;
} inline int h()///求最少还需要几步达到目标条件
{
return min(min(diff(), diff()), diff());
} inline void move(int i)///对相应方向进行题目中的旋转操作
{
int tmp = a[line[i][]];
for(int j = ; j < ; j++) a[line[i][j]] = a[line[i][j+]];
a[line[i][]] = tmp;
} bool dfs(int d,int maxd)///迭代搜索
{
if(is_final())
{
ans[d]='\0';
printf("%s\n",ans);
return true;
}
if(d+h()>maxd) return false;///剪枝
for(int i=;i<;i++)///对每个方向进行旋转
{
ans[d]='A'+i;
move(i);
if(dfs(d+,maxd)) return true;
move(rev[i]);///如果递归失败,调整回原来模式
}
return false;
} int main()
{
for(int i = ; i < ; i++)
for(int j = ; j < ; j++) line[i][j] = line[rev[i]][-j];///将对应方向的数字调整好
while(~scanf("%d",&a[])&&a[])
{
for(int i=; i<; i++)
{
scanf("%d",&a[i]);
if(!a[i]) return ;
}
if(is_final()) printf("No moves needed\n");
else for(int maxd=;;maxd++)
{
if(dfs(,maxd)) break;
}
printf("%d\n",a[]);
}
return ;
}
IDA*(以The Ratotion Game POJ--2286 UVa1343为例)的更多相关文章
- POJ 2286 The Rotation Game(IDA*)
The Rotation Game Time Limit: 15000MS Memory Limit: 150000K Total Submissions: 6396 Accepted: 21 ...
- POJ - 2286 - The Rotation Game (IDA*)
IDA*算法,即迭代加深的A*算法.实际上就是迭代加深+DFS+估价函数 题目传送:The Rotation Game AC代码: #include <map> #include < ...
- POJ 2286 The Rotation Game 迭代搜索深度 + A* == IDA*
感觉这样的算法还是比較局限的吧,反复搜索是一个不好的地方,并且须要高效的估值函数来进行强剪枝,这点比較困难. 迭代搜索深度是一个比較炫酷的搜索方式,只是有点拿时间换空间的感觉. 首先迭代深度比較搓的写 ...
- POJ 2286 The Rotation Game IDA*
(再一次感谢学长幻灯片) ID A* 随便自己yy了一下. 额嗯 思路什么的都没有问题 就是改不对.. 无奈地删代码...边删边交. 删啊删 哎呦 AC了 ... ... ... 找删的那一段 . o ...
- 【POJ 2286】 The Rotation Game
[题目链接] http://poj.org/problem?id=2286 [算法] IDA* [代码] #include <algorithm> #include <bitset& ...
- The Rotation Game (POJ 2286) 题解
[问题描述] (由于是英文的,看不懂,这里就把大意给大家说一下吧……都是中国人,相信大家也不愿意看英文……) 如图,一个井字形的棋盘,中间有着1-3任意的数,有ABCDEFGH八个操作,每个操作意味着 ...
- [poj] 2286 The Rotation Game || ID-DFS
原题 有1234四个数字,每个数字八个.有八种方向的移动,使得操作后中间八个方块的数字相同,求最小操作步数. 对于这种求最小步数的看起来就是dfs的题,就ID-DFS就好了. //不知道为什么都是ID ...
- 又见关系并查集 以POJ 1182 食物链为例
简单的关系并查集一般非常easy依据给出的关系搞出一个有向的环,那么两者之间的关系就变成了两者之间的距离. 对于此题: 若u.v不在一个集合内,则显然此条语句会合法(暂且忽略后两条.下同). 那么将f ...
- poj很好很有层次感(转)
OJ上的一些水题(可用来练手和增加自信) (POJ 3299,POJ 2159,POJ 2739,POJ 1083,POJ 2262,POJ 1503,POJ 3006,POJ 2255,POJ 30 ...
随机推荐
- Linux第三周作业
1.三个法宝 ①存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: ②函数调用堆栈,堆栈完成了计算机的基本功能:函数的参数传递机制和局部变量存取 : ③中断,多道程序操作系统的基点,没有中断机制 ...
- js里面判断一个字符串是否包含某个子串的方法
1. ES6的includes, 返回 Boolean var string = "foo", substring = "oo"; string.include ...
- 1-MAVEN 仓库
本地资源库 MAVEN的本地资源库是用来存储所有项目的依赖关系(插件和其他文件,这个文件被MAVEN 下载到本地文件中.) 可以通过修改MAVEN安装目录下conf/setting.xml配置 ...
- 适应c++ 新特性 - 与我 - 多年传统方式开发(新特性参考微软标准:https://msdn.microsoft.com/zh-cn/library/hh279654.aspx)
公司同事都在积极使用c++的新特性,并对其赞不绝口,而自己一直做着传统的c++开发方式,到底这些新特性如何,又是怎么提高开发效率的,我依然在疑问当中,从同事的说法和实际代码操练里,确实在减少代码量,集 ...
- Vue笔记:使用 vuex 管理应用状态
如果你在使用 vue.js , 那么我想你可能会对 vue 组件之间的通信感到崩溃 . 我在使用基于 vue.js 2.0 的UI框架 ElementUI 开发网站的时候 , 就遇到了这种问题 : 一 ...
- git-github-TortoiseGit综合使用教程(二)快速入门
:建立版本库 在github网站上创建一个版本库,并复制clone地址. git@github.com:jackadam1981/Flask_Base.git https://github.com/j ...
- PyCharm进行远程开发和调试linux服务器
简介: 或许我也应该迁移到linux环境去开发. 最近写的一些小东西,在wnidows上开发,在windows上调试,都很正常.可是一旦放进linux服务器,就歇菜了. 那么我们有什么办法处理这个wi ...
- 读书笔记 C#委托的BeginInvoke、EndInvoke之浅析
c#中有一种类型叫委托,它是一种引用类型.可以引用静态与非静态的方法,且这些方法的参数列表和返回值类型必须与所声明的委托一致. 委托引用的方法可以通过BeginInvoke和EndInvoke来异步进 ...
- Cracking The Coding Interview 1.7
//Write an algorithm such that if an element in an MxN matrix is 0, its entire row and column is set ...
- 50个常用的Linux命令
1.tar tar -xvf archive_name.tar 解压文件 tar -cvf archive_name.tar file 把文件file压缩成archive_name.tar tar ...